Encapsulation of curcumin in casein-dextran sulfate nanocomplexes for enhanced acid stability and bioaccessibility

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL Journal of Food Engineering Pub Date : 2025-02-06 DOI:10.1016/j.jfoodeng.2025.112512
Hyejung Lee, Qixin Zhong
{"title":"Encapsulation of curcumin in casein-dextran sulfate nanocomplexes for enhanced acid stability and bioaccessibility","authors":"Hyejung Lee,&nbsp;Qixin Zhong","doi":"10.1016/j.jfoodeng.2025.112512","DOIUrl":null,"url":null,"abstract":"<div><div>Casein is commonly used to encapsulate lipophilic polyphenols such as curcumin. However, casein capsules precipitate at ∼ pH 3–5.5. Sodium caseinate (NaCas)-dextran sulfate (DS) nanocomplexes were studied in this work to encapsulate curcumin for acid stability and bioaccessibility. Compounds were dissolved at pH 13.0, followed by adjusting pH to 7.0, 4.6, and 3.0. The chosen formulation (3.0 mg/mL curcumin, 5.0 mg/mL NaCas, and 5.0 mg/mL DS) led to an encapsulation efficiency (EE) of 94.8%, 90.2%, and 77.3% and loading capacity of 38.1%, 35.3%, and 34.5% at pH 7.0, 4.6, and 3.0, respectively. The EE of curcumin-loaded NaCas/DS nanocomplex dispersions remained similar (<em>P</em> &gt; 0.05) at pH 7.0 and 4.6 during 31-day ambient storage while at pH 3.0, slight precipitation decreased the EE by about 9% after 31 days. The Z-average diameter of dispersions was bigger at a lower pH and was smaller than 225 nm. During ambient storage, the Z-average diameter of dispersions was mostly stable. Encapsulation had no impact on the antioxidant capacity of curcumin but increased the bioaccessibility of curcumin to more than 53%, resulting from the amorphous curcumin structure. Therefore, NaCas/DS nanocomplexes have the potential of delivering curcumin in functional beverages, especially in acidic conditions.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"393 ","pages":"Article 112512"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000470","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Casein is commonly used to encapsulate lipophilic polyphenols such as curcumin. However, casein capsules precipitate at ∼ pH 3–5.5. Sodium caseinate (NaCas)-dextran sulfate (DS) nanocomplexes were studied in this work to encapsulate curcumin for acid stability and bioaccessibility. Compounds were dissolved at pH 13.0, followed by adjusting pH to 7.0, 4.6, and 3.0. The chosen formulation (3.0 mg/mL curcumin, 5.0 mg/mL NaCas, and 5.0 mg/mL DS) led to an encapsulation efficiency (EE) of 94.8%, 90.2%, and 77.3% and loading capacity of 38.1%, 35.3%, and 34.5% at pH 7.0, 4.6, and 3.0, respectively. The EE of curcumin-loaded NaCas/DS nanocomplex dispersions remained similar (P > 0.05) at pH 7.0 and 4.6 during 31-day ambient storage while at pH 3.0, slight precipitation decreased the EE by about 9% after 31 days. The Z-average diameter of dispersions was bigger at a lower pH and was smaller than 225 nm. During ambient storage, the Z-average diameter of dispersions was mostly stable. Encapsulation had no impact on the antioxidant capacity of curcumin but increased the bioaccessibility of curcumin to more than 53%, resulting from the amorphous curcumin structure. Therefore, NaCas/DS nanocomplexes have the potential of delivering curcumin in functional beverages, especially in acidic conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
期刊最新文献
Editorial Board Explainable artificial intelligence (xAI) applied to deep computer vision of microscopy imaging and spectroscopy for assessment of oleogel stability over storage Study on electrostatic field assisted freezing temperature storage of grapes Impact of starch morphology on the stability and color of paprika red Uncertainty-aware constrained optimization for air convective drying of thin apple slices using machine-learning-based response surface methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1