Secondary scattering shape from shading for precise terrain reconstruction of the lunar permanently shadowed regions

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Icarus Pub Date : 2025-02-06 DOI:10.1016/j.icarus.2025.116494
Jia Qian , Zhen Ye , Siyi Qiu , Rong Huang , Huan Xie , Yusheng Xu , Xiaohua Tong
{"title":"Secondary scattering shape from shading for precise terrain reconstruction of the lunar permanently shadowed regions","authors":"Jia Qian ,&nbsp;Zhen Ye ,&nbsp;Siyi Qiu ,&nbsp;Rong Huang ,&nbsp;Huan Xie ,&nbsp;Yusheng Xu ,&nbsp;Xiaohua Tong","doi":"10.1016/j.icarus.2025.116494","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution digital elevation models (DEMs) of permanently shadowed regions (PSRs) at the lunar South Pole are crucial for upcoming exploration missions. Recent advances, such as high-resolution images acquired from ShadowCam, utilize indirect lighting to image PSRs. This provides data for the Shape from Shading (SFS) technique, which can extract subtle topographic details from single-image to reconstruct high-resolution terrain. However, traditional SFS methods are not suitable for complex secondary scattering scenes in PSRs with multiple secondary light sources. To address this issue, a novel secondary scattering SFS (SS-SFS) method is developed for pixel-wise 3D reconstruction of PSR surfaces, which utilizes indirect illuminated imagery and the corresponding low-resolution DEM to generate DEM with high resolution matches the input image. The proposed method effectively extracts and simplifies multiple incident facets associated with each shadowed facet through clustering, while constructing and optimizing the SS-SFS loss function. Experiments were conducted using ShadowCam images of two areas including both PSRs and temporary shadowed areas, to demonstrate the performance of the proposed method. The SS-SFS DEMs effectively capture intricate topographic details, and comparisons with adjusted Lunar Orbiter Laser Altimeter laser points indicate that the SS-SFS DEMs exhibit high overall accuracy. The high-resolution slope map of PSRs was calculated based on the SS-SFS DEMs, and overcome the limitation that surface slope is relatively underestimated from LOLA DEMs. Additionally, the SS-SFS DEMs were comprehensively compared with the traditional SFS DEMs generated using Narrow Angle Camera imagery in a small temporarily shadowed area, revealing strong consistency and further validating the effectiveness of detailed reconstruction. Overall, the proposed SS-SFS method is essential for generating high-resolution DEMs of PSRs, supporting future lunar South Pole exploration missions.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"431 ","pages":"Article 116494"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525000417","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution digital elevation models (DEMs) of permanently shadowed regions (PSRs) at the lunar South Pole are crucial for upcoming exploration missions. Recent advances, such as high-resolution images acquired from ShadowCam, utilize indirect lighting to image PSRs. This provides data for the Shape from Shading (SFS) technique, which can extract subtle topographic details from single-image to reconstruct high-resolution terrain. However, traditional SFS methods are not suitable for complex secondary scattering scenes in PSRs with multiple secondary light sources. To address this issue, a novel secondary scattering SFS (SS-SFS) method is developed for pixel-wise 3D reconstruction of PSR surfaces, which utilizes indirect illuminated imagery and the corresponding low-resolution DEM to generate DEM with high resolution matches the input image. The proposed method effectively extracts and simplifies multiple incident facets associated with each shadowed facet through clustering, while constructing and optimizing the SS-SFS loss function. Experiments were conducted using ShadowCam images of two areas including both PSRs and temporary shadowed areas, to demonstrate the performance of the proposed method. The SS-SFS DEMs effectively capture intricate topographic details, and comparisons with adjusted Lunar Orbiter Laser Altimeter laser points indicate that the SS-SFS DEMs exhibit high overall accuracy. The high-resolution slope map of PSRs was calculated based on the SS-SFS DEMs, and overcome the limitation that surface slope is relatively underestimated from LOLA DEMs. Additionally, the SS-SFS DEMs were comprehensively compared with the traditional SFS DEMs generated using Narrow Angle Camera imagery in a small temporarily shadowed area, revealing strong consistency and further validating the effectiveness of detailed reconstruction. Overall, the proposed SS-SFS method is essential for generating high-resolution DEMs of PSRs, supporting future lunar South Pole exploration missions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
期刊最新文献
Editorial Board Boulder-induced spin variability in the YORP effect Secondary scattering shape from shading for precise terrain reconstruction of the lunar permanently shadowed regions Further reverberations of the 1983 impact with Saturn’s C ring A numerical model for the atmospheric entry of hydrated, phyllosilicate-rich micrometeorites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1