Niklas Nolzen , Alissa Ganter , Nils Baumgärtner , Florian Joseph Baader , Ludger Leenders , André Bardow
{"title":"Where to market flexibility? Integrating continuous intraday trading into multi-market participation of industrial multi-energy systems","authors":"Niklas Nolzen , Alissa Ganter , Nils Baumgärtner , Florian Joseph Baader , Ludger Leenders , André Bardow","doi":"10.1016/j.compchemeng.2025.109026","DOIUrl":null,"url":null,"abstract":"<div><div>The rising share of volatile renewable electricity generation increases the demand for flexibility. Flexibility can be offered by industrial multi-energy systems and marketed either on the continuous intraday, day-ahead, or balancing-power markets. Thus, industrial multi-energy systems face the question where to market their flexibility. We propose a two-step method to integrate trading on the continuous intraday market into a multi-market optimization for flexible industrial multi-energy systems. First, we estimate revenues from continuous trading in the intraday market, employing option-price theory. Second, a multi-stage stochastic optimization allocates the flexibility to the three markets. The case study of an industrial multi-energy system demonstrates that coordinated bidding in all three markets reduces costs the most. A sensitivity analysis reveals that the optimal split between the different markets strongly depends on the intraday market volatility. Overall, the proposed method provides a practical decision-support tool for multi-energy systems participating in short-term electricity and balancing-power markets.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 109026"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000304","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The rising share of volatile renewable electricity generation increases the demand for flexibility. Flexibility can be offered by industrial multi-energy systems and marketed either on the continuous intraday, day-ahead, or balancing-power markets. Thus, industrial multi-energy systems face the question where to market their flexibility. We propose a two-step method to integrate trading on the continuous intraday market into a multi-market optimization for flexible industrial multi-energy systems. First, we estimate revenues from continuous trading in the intraday market, employing option-price theory. Second, a multi-stage stochastic optimization allocates the flexibility to the three markets. The case study of an industrial multi-energy system demonstrates that coordinated bidding in all three markets reduces costs the most. A sensitivity analysis reveals that the optimal split between the different markets strongly depends on the intraday market volatility. Overall, the proposed method provides a practical decision-support tool for multi-energy systems participating in short-term electricity and balancing-power markets.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.