Luyao Min , Fuchun Huo , Zhiman Zhu , Lina Din , Lin Zhang , Yuting Xu , Xuewei Xing , Peng Zhang , Qingling Wang
{"title":"Mechanistic study of METTL3 inducing ferroptosis to promote cervical cancer progression through mediating m6A modification of COTE-1","authors":"Luyao Min , Fuchun Huo , Zhiman Zhu , Lina Din , Lin Zhang , Yuting Xu , Xuewei Xing , Peng Zhang , Qingling Wang","doi":"10.1016/j.cellsig.2025.111649","DOIUrl":null,"url":null,"abstract":"<div><div>Cervical Cancer (CC) is one of the leading causes of tumor-related deaths among women worldwide, and the mechanisms underlying the anti-ferroptosis of CC cells are still unclear. Methyltransferase like 3 (METTL3) is widely expressed various types of tissues and plays a crucial role in tumorigenesis in part by mediating cell death. However, its regulatory function in CC progression and especially the underlying mechanisms have not been fully elucidated. This study aims to explore the role of METTL3 in the ferroptosis of CC cells. Mechanistically, by MeRIP-seq, we identified COTE-1 as a target of METTL3 mediated m6A modification, and revealed that METTL3-mediated COTE-1 expression was dependent on the m6A reader-dependent manner. Functionally, in vitro and in vivo experiments that METTL3 promotes proliferation and metastasis of CC cells by regulating COTE-1 expression. In addition, the study verified the effect of the METTL3/COTE-1 axis on autophagy-dependent ferroptosis. In summary, METTL3 influences CC progression by mediating COTE-1 to influence autophagy-dependent ferroptosis, representing a potential therapeutic approach for treating CC.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"128 ","pages":"Article 111649"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000622","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical Cancer (CC) is one of the leading causes of tumor-related deaths among women worldwide, and the mechanisms underlying the anti-ferroptosis of CC cells are still unclear. Methyltransferase like 3 (METTL3) is widely expressed various types of tissues and plays a crucial role in tumorigenesis in part by mediating cell death. However, its regulatory function in CC progression and especially the underlying mechanisms have not been fully elucidated. This study aims to explore the role of METTL3 in the ferroptosis of CC cells. Mechanistically, by MeRIP-seq, we identified COTE-1 as a target of METTL3 mediated m6A modification, and revealed that METTL3-mediated COTE-1 expression was dependent on the m6A reader-dependent manner. Functionally, in vitro and in vivo experiments that METTL3 promotes proliferation and metastasis of CC cells by regulating COTE-1 expression. In addition, the study verified the effect of the METTL3/COTE-1 axis on autophagy-dependent ferroptosis. In summary, METTL3 influences CC progression by mediating COTE-1 to influence autophagy-dependent ferroptosis, representing a potential therapeutic approach for treating CC.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.