Xiaohong Wang, Qian Ye, Lei Liu, Haitao Niu, Bangbang Du
{"title":"ResNet-50-NTS digital painting image style classification based on Three-Branch convolutional attention","authors":"Xiaohong Wang, Qian Ye, Lei Liu, Haitao Niu, Bangbang Du","doi":"10.1016/j.eij.2025.100614","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the difficulties and challenges faced by current traditional digital painting image style classification methods, the study enhances the residual neural network model by incorporating a three-branch convolutional attention mechanism. Furthermore, it integrates the improved residual neural network model with a fine-grained image classification model, ultimately presenting a novel approach for digital painting image style classification. The experimental results show that the final model can reach 100%, 98.61%, and 99.31% for the image classification precision, recall, and F1 value of ancient Greek pottery style, respectively. The improved residual neural network model proposed in this study has significant advantages in the task of digital painting image style classification, and can provide an efficient and reliable solution for classifying and recognizing digital painting image styles.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100614"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000076","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the difficulties and challenges faced by current traditional digital painting image style classification methods, the study enhances the residual neural network model by incorporating a three-branch convolutional attention mechanism. Furthermore, it integrates the improved residual neural network model with a fine-grained image classification model, ultimately presenting a novel approach for digital painting image style classification. The experimental results show that the final model can reach 100%, 98.61%, and 99.31% for the image classification precision, recall, and F1 value of ancient Greek pottery style, respectively. The improved residual neural network model proposed in this study has significant advantages in the task of digital painting image style classification, and can provide an efficient and reliable solution for classifying and recognizing digital painting image styles.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.