Coordination of preventive, emergency and restorative trading strategies under uncertain sequential extreme weather events

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2025-02-10 DOI:10.1016/j.ijepes.2025.110500
Xuemei Dai , Jing Zhou , Xu Zhang , Kaifeng Zhang , Wei Feng
{"title":"Coordination of preventive, emergency and restorative trading strategies under uncertain sequential extreme weather events","authors":"Xuemei Dai ,&nbsp;Jing Zhou ,&nbsp;Xu Zhang ,&nbsp;Kaifeng Zhang ,&nbsp;Wei Feng","doi":"10.1016/j.ijepes.2025.110500","DOIUrl":null,"url":null,"abstract":"<div><div>Sequential extreme weather events (SEWEs), such as hurricanes and tropical storms occurring in succession, pose significant challenges to local energy (LE) and flexibility (LF) markets. Effective coordination of preventive, emergency, and restorative strategies can mitigate losses during these events, but designing optimal trading strategies for joint LE and LF markets remains complex. This paper introduces a novel trading method to address this challenge. First, a two-layer graph neural network (GNN) is employed to predict the probability distribution of system outages caused by SEWEs. Then, a joint LE and LF market transaction model is developed to optimize multi-stage trading and minimize overall losses throughout SEWEs. To address the uncertainty of SEWEs, a probability forecast-driven distributionally robust joint chance constraint (DRJCC) optimization method is proposed, which is efficiently solvable as a convex conic problem. Finally, case studies conducted on modified IEEE 141-bus and 300-bus systems validate the approach, showing reductions in load shedding and trading costs by up to 15.39% and 42.88%, respectively, compared to single-stage or two-stage strategies. Additionally, the two-layer GNN model achieves a root mean square error of 0.01, demonstrating high accuracy in predicting system outage statuses.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"165 ","pages":"Article 110500"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000511","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential extreme weather events (SEWEs), such as hurricanes and tropical storms occurring in succession, pose significant challenges to local energy (LE) and flexibility (LF) markets. Effective coordination of preventive, emergency, and restorative strategies can mitigate losses during these events, but designing optimal trading strategies for joint LE and LF markets remains complex. This paper introduces a novel trading method to address this challenge. First, a two-layer graph neural network (GNN) is employed to predict the probability distribution of system outages caused by SEWEs. Then, a joint LE and LF market transaction model is developed to optimize multi-stage trading and minimize overall losses throughout SEWEs. To address the uncertainty of SEWEs, a probability forecast-driven distributionally robust joint chance constraint (DRJCC) optimization method is proposed, which is efficiently solvable as a convex conic problem. Finally, case studies conducted on modified IEEE 141-bus and 300-bus systems validate the approach, showing reductions in load shedding and trading costs by up to 15.39% and 42.88%, respectively, compared to single-stage or two-stage strategies. Additionally, the two-layer GNN model achieves a root mean square error of 0.01, demonstrating high accuracy in predicting system outage statuses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Cooperative optimal operation of multi-microgrids and shared energy storage for voltage regulation of distribution networks based on improved Nash bargaining A two-stage active current limiting control coordinated protection scheme for multi-terminal MMC-HVDC grid A comprehensive overview of high-speed solid-rotor induction machines: Applications, classification, and multi-physics modeling Editorial Board Distributed coordinated control for voltage regulation in active distribution networks based on robust model predictive control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1