Crystal growth and magnetic evolution of antiferromagnetic topological insulator Zn-doped MnBi2Te4

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2025-02-04 DOI:10.1016/j.jssc.2025.125242
Zhenduo Fan , Haohang Xu , Jinggeng Zhao , Yaohui Zhang , Xianjie Wang , Yu Sui , Zhe Lv , Jian Liu , Sida Jiang , Zhiguo Liu
{"title":"Crystal growth and magnetic evolution of antiferromagnetic topological insulator Zn-doped MnBi2Te4","authors":"Zhenduo Fan ,&nbsp;Haohang Xu ,&nbsp;Jinggeng Zhao ,&nbsp;Yaohui Zhang ,&nbsp;Xianjie Wang ,&nbsp;Yu Sui ,&nbsp;Zhe Lv ,&nbsp;Jian Liu ,&nbsp;Sida Jiang ,&nbsp;Zhiguo Liu","doi":"10.1016/j.jssc.2025.125242","DOIUrl":null,"url":null,"abstract":"<div><div>As the first intrinsic magnetic topological insulator, MnBi<sub>2</sub>Te<sub>4</sub> has provided a material platform for the realization of various novel physical phenomena arising from the interaction between magnetism and band topology. Here, transition element Zn<em>-</em>doped MnBi<sub>2</sub>Te<sub>4</sub> crystals of millimeter size, synthesized by using self-flux method, are reported. With increasing Zn content, the hexagonal lattice shrinks, and the Raman frequencies show a red shift. All samples undergo a transition from A<em>-</em>type antiferromagnetic (A<em>-</em>AFM) to canted antiferromagnetic (CAFM) to ferromagnetic (FM) under magnetic field. The antiferromagnetic ordering temperature slightly increases from 24.2 K for MnBi<sub>2</sub>Te<sub>4</sub> to 25.2 K for Mn<sub>0.75</sub>Zn<sub>0.25</sub>Bi<sub>2</sub>Te<sub>4</sub>. The transition field from AFM to CAFM decreases from 3.4 T for <em>x</em> = 0–3.07 T for <em>x</em> = 0.25. Isothermal magnetization data suggest that the single<em>-</em>ion anisotropy of Mn<sup>2+</sup> decrease and the interlayer magnetic interaction increase slightly due to the diluted magnetic ions and unit cell shrinkage. Samples Mn<sub>0.9</sub>Zn<sub>0.1</sub>Bi<sub>2</sub>Te<sub>4</sub> and Mn<sub>0.8</sub>Zn<sub>0.2</sub>Bi<sub>2</sub>Te<sub>4</sub> show metallic conduction with a cusplike anomaly at around <em>T</em><sub><em>N</em></sub> ≈ 24 K, corresponding to a long<em>-</em>range antiferromagnetic (AFM) transition. The increase of <em>T</em><sub><em>N</em></sub> and decrease of transition field (<span><math><mrow><msubsup><mi>H</mi><mi>c</mi><mrow><mi>S</mi><mi>F</mi></mrow></msubsup></mrow></math></span>) upon Zn doping, make it possible to manipulate magnetic and electrical properties in topological insulators by non<em>-</em>magnetic element substitution, which is of great significance for further application in quantum information storage and spintronics.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"345 ","pages":"Article 125242"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625000659","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

As the first intrinsic magnetic topological insulator, MnBi2Te4 has provided a material platform for the realization of various novel physical phenomena arising from the interaction between magnetism and band topology. Here, transition element Zn-doped MnBi2Te4 crystals of millimeter size, synthesized by using self-flux method, are reported. With increasing Zn content, the hexagonal lattice shrinks, and the Raman frequencies show a red shift. All samples undergo a transition from A-type antiferromagnetic (A-AFM) to canted antiferromagnetic (CAFM) to ferromagnetic (FM) under magnetic field. The antiferromagnetic ordering temperature slightly increases from 24.2 K for MnBi2Te4 to 25.2 K for Mn0.75Zn0.25Bi2Te4. The transition field from AFM to CAFM decreases from 3.4 T for x = 0–3.07 T for x = 0.25. Isothermal magnetization data suggest that the single-ion anisotropy of Mn2+ decrease and the interlayer magnetic interaction increase slightly due to the diluted magnetic ions and unit cell shrinkage. Samples Mn0.9Zn0.1Bi2Te4 and Mn0.8Zn0.2Bi2Te4 show metallic conduction with a cusplike anomaly at around TN ≈ 24 K, corresponding to a long-range antiferromagnetic (AFM) transition. The increase of TN and decrease of transition field (HcSF) upon Zn doping, make it possible to manipulate magnetic and electrical properties in topological insulators by non-magnetic element substitution, which is of great significance for further application in quantum information storage and spintronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Editorial Board Contents continued Exploring the effects of halide anions and pressure on the structural and functional properties of helical coordination polymers: Cu(SCN2H4)3X (X = Cl, Br, I) Long-term aging of multiwall nanotubes and fullerene-like nanoparticles of WS2 A Ge/GeO2/Titanate nanocomposite with high energy density and enhanced long-term stability for lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1