Meegan Shepherd , Elizabeth Joyce , Bethany Williams , Siobhan Graham , Winnie Li , Jeremy Booth , Helen A. McNair
{"title":"Training for tomorrow: Establishing a worldwide curriculum in online adaptive radiation therapy","authors":"Meegan Shepherd , Elizabeth Joyce , Bethany Williams , Siobhan Graham , Winnie Li , Jeremy Booth , Helen A. McNair","doi":"10.1016/j.tipsro.2025.100304","DOIUrl":null,"url":null,"abstract":"<div><div>This commentary discusses the implementation of online adaptive radiation therapy (oART) in cancer treatment within the context of current challenges faced by radiation therapy professionals. oART enables modifications to treatment plans based on daily imaging, enhancing target accuracy while minimising harm to surrounding organs. Despite its potential to improve patient outcomes, the application of oART is hindered by notable barriers, particularly in human resources. A global shortage of skilled radiation professionals such as radiation therapists or therapeutic radiographers (RTTs), medical physicists and radiation oncologists, along with training challenges in online adaptive techniques, hinders oART implementation and sustainability. Moreover, geographical disparities limit access to advanced training programs, leaving RTTs and their patients in underserved regions at a disadvantage. There is growing global evidence that RTTs are being successfully trained to lead adaptive fractions in both cone-beam computed tomography and magnetic resonance imaging guided oART. This commentary proposes the notion of standards for a global training curriculum to address barriers and expand RTT capabilities in delivering oART. By leveraging artificial intelligence and fostering interdisciplinary collaboration, the radiation therapy field can enhance efficiency and accuracy in oART. Successful training models from leading institutions illustrate the importance of hands-on experience and ongoing mentorship. A coordinated effort among stakeholders is essential to establish a comprehensive global training framework, ultimately improving patient access to oART and elevating standards of care worldwide.</div></div>","PeriodicalId":36328,"journal":{"name":"Technical Innovations and Patient Support in Radiation Oncology","volume":"33 ","pages":"Article 100304"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Innovations and Patient Support in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405632425000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0
Abstract
This commentary discusses the implementation of online adaptive radiation therapy (oART) in cancer treatment within the context of current challenges faced by radiation therapy professionals. oART enables modifications to treatment plans based on daily imaging, enhancing target accuracy while minimising harm to surrounding organs. Despite its potential to improve patient outcomes, the application of oART is hindered by notable barriers, particularly in human resources. A global shortage of skilled radiation professionals such as radiation therapists or therapeutic radiographers (RTTs), medical physicists and radiation oncologists, along with training challenges in online adaptive techniques, hinders oART implementation and sustainability. Moreover, geographical disparities limit access to advanced training programs, leaving RTTs and their patients in underserved regions at a disadvantage. There is growing global evidence that RTTs are being successfully trained to lead adaptive fractions in both cone-beam computed tomography and magnetic resonance imaging guided oART. This commentary proposes the notion of standards for a global training curriculum to address barriers and expand RTT capabilities in delivering oART. By leveraging artificial intelligence and fostering interdisciplinary collaboration, the radiation therapy field can enhance efficiency and accuracy in oART. Successful training models from leading institutions illustrate the importance of hands-on experience and ongoing mentorship. A coordinated effort among stakeholders is essential to establish a comprehensive global training framework, ultimately improving patient access to oART and elevating standards of care worldwide.