Renkai Wu , Liuyue Pan , Pengchen Liang , Qing Chang , Xianjin Wang , Weihuan Fang
{"title":"SK-VM++: Mamba assists skip-connections for medical image segmentation","authors":"Renkai Wu , Liuyue Pan , Pengchen Liang , Qing Chang , Xianjin Wang , Weihuan Fang","doi":"10.1016/j.bspc.2025.107646","DOIUrl":null,"url":null,"abstract":"<div><div>In medical automatic image segmentation engineering, the U-shaped structure is the primary key framework. And the skip-connection operation in it is an important operation for key fusion of high and low features, which is one of the highlights of the U-shaped architecture. However, the traditional U-shaped architecture usually employs direct concatenation or different variants of convolution-based module composition. The recent emergence of Mamba, based on state-space models (SSMs), has shaken up the traditional convolution and Transformers that have long been the foundational building blocks. In this study, we analyze the impact of Mamba on skip-connection operations for U-shaped architectures and propose a novel skip-connection operation (SK-VM++) combining the UNet++ framework and Mamba. Specifically, Mamba is able to refine the fusion of high and low feature information better than traditional convolution. In addition, SK-VM++ leverages the excellent property of Mamba’s concatenation, making it significantly less sensitive to changes in computational complexity and parameters caused by changes in the number of channels. In particular, the number of channels increases from 64 to 512, and the convolution-based FLOPs and parameters rise by 8.82 and 6.22 times, respectively, compared to our proposed Mamba-based skip-connection operation. In addition, comparing with the most popular nnU-Net and VM-UNet, the DSC of SK-VM++ improves by 2.01% and 1.10% on the ISIC2017 dataset, 1.59% and 9.10% on the CVC-ClinicDB dataset, 1.23% and 18.94% on the Promise12 dataset and 46.25% and 34.01% improvement on the UWF-RHS dataset. The code is available from <span><span>https://github.com/wurenkai/SK-VMPlusPlus</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"105 ","pages":"Article 107646"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425001570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In medical automatic image segmentation engineering, the U-shaped structure is the primary key framework. And the skip-connection operation in it is an important operation for key fusion of high and low features, which is one of the highlights of the U-shaped architecture. However, the traditional U-shaped architecture usually employs direct concatenation or different variants of convolution-based module composition. The recent emergence of Mamba, based on state-space models (SSMs), has shaken up the traditional convolution and Transformers that have long been the foundational building blocks. In this study, we analyze the impact of Mamba on skip-connection operations for U-shaped architectures and propose a novel skip-connection operation (SK-VM++) combining the UNet++ framework and Mamba. Specifically, Mamba is able to refine the fusion of high and low feature information better than traditional convolution. In addition, SK-VM++ leverages the excellent property of Mamba’s concatenation, making it significantly less sensitive to changes in computational complexity and parameters caused by changes in the number of channels. In particular, the number of channels increases from 64 to 512, and the convolution-based FLOPs and parameters rise by 8.82 and 6.22 times, respectively, compared to our proposed Mamba-based skip-connection operation. In addition, comparing with the most popular nnU-Net and VM-UNet, the DSC of SK-VM++ improves by 2.01% and 1.10% on the ISIC2017 dataset, 1.59% and 9.10% on the CVC-ClinicDB dataset, 1.23% and 18.94% on the Promise12 dataset and 46.25% and 34.01% improvement on the UWF-RHS dataset. The code is available from https://github.com/wurenkai/SK-VMPlusPlus.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.