Non-uniform Fourier transform based image classification in single-particle Cryo-EM

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Structural Biology: X Pub Date : 2025-02-03 DOI:10.1016/j.yjsbx.2025.100121
ZiJian Bai, Jian Huang
{"title":"Non-uniform Fourier transform based image classification in single-particle Cryo-EM","authors":"ZiJian Bai,&nbsp;Jian Huang","doi":"10.1016/j.yjsbx.2025.100121","DOIUrl":null,"url":null,"abstract":"<div><div>In the single-particle Cryo-EM projection image classification, it is a common practice to apply the Fourier transform to the images and extract rotation-invariant features in the frequency domain. However, this process involves interpolation, which can reduce the accuracy of the results. In contrast, the non-uniform Fourier transform provides more direct and accurate computation of rotation-invariant features without the need for interpolation in the computation process. Leveraging the capabilities of the non-uniform discrete Fourier transform (NUDFT), we have developed an algorithm for the rotation-invariant classification. To highlight its potential and applicability in the field of single-particle Cryo-EM, we conducted a direct comparison with the traditional Fourier transform and other methods, demonstrating the superior performance of the NUDFT.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"11 ","pages":"Article 100121"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152425000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the single-particle Cryo-EM projection image classification, it is a common practice to apply the Fourier transform to the images and extract rotation-invariant features in the frequency domain. However, this process involves interpolation, which can reduce the accuracy of the results. In contrast, the non-uniform Fourier transform provides more direct and accurate computation of rotation-invariant features without the need for interpolation in the computation process. Leveraging the capabilities of the non-uniform discrete Fourier transform (NUDFT), we have developed an algorithm for the rotation-invariant classification. To highlight its potential and applicability in the field of single-particle Cryo-EM, we conducted a direct comparison with the traditional Fourier transform and other methods, demonstrating the superior performance of the NUDFT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
期刊最新文献
Non-uniform Fourier transform based image classification in single-particle Cryo-EM Protein identification using Cryo-EM and artificial intelligence guides improved sample purification SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in Aspergillus fumigatus siderophore biosynthesis Highly versatile small virus-encoded proteins in cellular membranes: A structural perspective on how proteins’ inherent conformational plasticity couples with host membranes’ properties to control cellular processes Corrigendum to “Minimizing ice contamination during specimen preparation for cryo-soft X-ray tomography and cryo-electron tomography” [J. Struct. Biol.: X 10(2024) 100113]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1