Surajit Ghosh , Sukhendu Dey , Ahmadul Hoque Mandal , Auroshree Sadhu , Nimai Chandra Saha , Damià Barceló , Paolo Pastorino , Shubhajit Saha
{"title":"Exploring the ecotoxicological impacts of microplastics on freshwater fish: A critical review","authors":"Surajit Ghosh , Sukhendu Dey , Ahmadul Hoque Mandal , Auroshree Sadhu , Nimai Chandra Saha , Damià Barceló , Paolo Pastorino , Shubhajit Saha","doi":"10.1016/j.jconhyd.2025.104514","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) have become ubiquitous in the environment, prompting significant concern among ecotoxicologists due to their potential toxic effects. These particles originate from various sources, including the fragmentation of larger plastic debris (secondary microplastics) and consumer products such as liquid soaps, exfoliants, and cleaning agents. The widespread use of plastics, coupled with inadequate waste management, poses a growing threat to ecosystem health worldwide. MPs are plastic particles composed of high-molecular-weight polymers that exhibit biochemical stability. Plastics break down into MPs and even smaller nanoplastics through various degradation mechanisms, such as exposure to UV radiation from sunlight and other environmental factors. Due to their resemblance to certain types of zooplankton and food particles, MPs are often ingested by fish, entering their digestive systems. Once inside, they do not remain solely in the gut; rather, they infiltrate the fish's circulatory and lymphatic systems, eventually distributing throughout various tissues and organs. Microplastics have been found in fish gills, muscles, liver, heart, swim bladders, ovaries, spinal cords, and even brains. The presence of MPs in these organs has been linked to significant adverse effects, including reproductive, neurological, hormonal, and immune system disruptions. This toxicity extends beyond fish, as bioaccumulation and biomagnification of MPs affect other organisms as well, marking MPs as a major anthropogenic stressor that impacts ecosystems at multiple levels. Research indicates that nearly all aquatic environments globally are at risk of MP contamination. Laboratory and field studies highlight fish as particularly susceptible to MP ingestion, though freshwater species have been less extensively studied than marine counterparts. After exposure, fish may suffer various health issues, either directly from MPs or from their interaction with other contaminants. The broader environmental implications of these laboratory findings and the specific role of MPs in increasing fish exposure to harmful chemicals remain topics of ongoing debate. This review aims to contribute to ecotoxicological insights on fish contamination by MPs and outline areas for future investigation.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"Article 104514"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000191","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) have become ubiquitous in the environment, prompting significant concern among ecotoxicologists due to their potential toxic effects. These particles originate from various sources, including the fragmentation of larger plastic debris (secondary microplastics) and consumer products such as liquid soaps, exfoliants, and cleaning agents. The widespread use of plastics, coupled with inadequate waste management, poses a growing threat to ecosystem health worldwide. MPs are plastic particles composed of high-molecular-weight polymers that exhibit biochemical stability. Plastics break down into MPs and even smaller nanoplastics through various degradation mechanisms, such as exposure to UV radiation from sunlight and other environmental factors. Due to their resemblance to certain types of zooplankton and food particles, MPs are often ingested by fish, entering their digestive systems. Once inside, they do not remain solely in the gut; rather, they infiltrate the fish's circulatory and lymphatic systems, eventually distributing throughout various tissues and organs. Microplastics have been found in fish gills, muscles, liver, heart, swim bladders, ovaries, spinal cords, and even brains. The presence of MPs in these organs has been linked to significant adverse effects, including reproductive, neurological, hormonal, and immune system disruptions. This toxicity extends beyond fish, as bioaccumulation and biomagnification of MPs affect other organisms as well, marking MPs as a major anthropogenic stressor that impacts ecosystems at multiple levels. Research indicates that nearly all aquatic environments globally are at risk of MP contamination. Laboratory and field studies highlight fish as particularly susceptible to MP ingestion, though freshwater species have been less extensively studied than marine counterparts. After exposure, fish may suffer various health issues, either directly from MPs or from their interaction with other contaminants. The broader environmental implications of these laboratory findings and the specific role of MPs in increasing fish exposure to harmful chemicals remain topics of ongoing debate. This review aims to contribute to ecotoxicological insights on fish contamination by MPs and outline areas for future investigation.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.