Background suppression and comprehensive prototype pyramid distillation for few-shot object detection

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2025-02-08 DOI:10.1016/j.robot.2025.104938
Ning Li , Mingliang Wang , Gaochao Yang , Bo Li , Baohua Yuan , Shoukun Xu , Jun Qi
{"title":"Background suppression and comprehensive prototype pyramid distillation for few-shot object detection","authors":"Ning Li ,&nbsp;Mingliang Wang ,&nbsp;Gaochao Yang ,&nbsp;Bo Li ,&nbsp;Baohua Yuan ,&nbsp;Shoukun Xu ,&nbsp;Jun Qi","doi":"10.1016/j.robot.2025.104938","DOIUrl":null,"url":null,"abstract":"<div><div>Few-Shot Object Detection (FSOD) methods can achieve detection of novel classes with only a small number of annotated samples and have received widespread attention in recent years. Meta-learning has been proven to be a key technology for addressing few-shot problems. Typically, meta-learning-based methods require an additional support branch to extract class prototypes for the few-shot classes, and the detection head performs classification and detection by measuring the distance between the class prototypes and the query features. Since the input to the support branch is the object image annotated with a bounding box, it often contains a large amount of background information, which degrades the quality of the class prototypes. Through our meticulous observation, we found that the center of the bounding box is often the core feature area of the object. Based on this, we designed a lightweight Background Suppression (BS) module that suppresses background features by measuring the similarity between the peripheral and central features of the support features, thereby providing high-quality support features for class prototype extraction. Additionally, in terms of class prototype extraction, we designed a more robust Comprehensive Prototype Pyramid Distillation (CPPD) module. This module first captures the multi-scale feature information of the object from the background-suppressed support features, and then uses a pyramid structure to hierarchically distill the multi-scale features to extract more comprehensive and purer class prototypes. Extensive experimental results on the PASCAL VOC and COCO datasets show that compared to other models under the same architecture and techniques, we achieved the best results.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"187 ","pages":"Article 104938"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025000247","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Few-Shot Object Detection (FSOD) methods can achieve detection of novel classes with only a small number of annotated samples and have received widespread attention in recent years. Meta-learning has been proven to be a key technology for addressing few-shot problems. Typically, meta-learning-based methods require an additional support branch to extract class prototypes for the few-shot classes, and the detection head performs classification and detection by measuring the distance between the class prototypes and the query features. Since the input to the support branch is the object image annotated with a bounding box, it often contains a large amount of background information, which degrades the quality of the class prototypes. Through our meticulous observation, we found that the center of the bounding box is often the core feature area of the object. Based on this, we designed a lightweight Background Suppression (BS) module that suppresses background features by measuring the similarity between the peripheral and central features of the support features, thereby providing high-quality support features for class prototype extraction. Additionally, in terms of class prototype extraction, we designed a more robust Comprehensive Prototype Pyramid Distillation (CPPD) module. This module first captures the multi-scale feature information of the object from the background-suppressed support features, and then uses a pyramid structure to hierarchically distill the multi-scale features to extract more comprehensive and purer class prototypes. Extensive experimental results on the PASCAL VOC and COCO datasets show that compared to other models under the same architecture and techniques, we achieved the best results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
Background suppression and comprehensive prototype pyramid distillation for few-shot object detection Achieving adaptive tasks from human instructions for robots using large language models and behavior trees Editorial Board Editorial Board Motion priority optimization framework towards automated and teleoperated robot cooperation in industrial recovery scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1