{"title":"Transcriptome analysis of Berberine induced accelerated tail fin regeneration in Zebrafish larvae","authors":"Radhika Gupta , Chitra Bhasin , Adita Joshi , Nisheeth Agarwal , Ayush Aggarwal , Padmshree Mudgal","doi":"10.1016/j.gep.2025.119390","DOIUrl":null,"url":null,"abstract":"<div><div>Humans have limited capacity to regenerate lost tissues post injury. The ability to modulate regenerative repair of tissues offers possibilities for restoring loss of tissue (organ) structure and function. Zebrafish (<em>Danio rerio</em>) larvae fin fold regeneration model is a simple system to study the process of regeneration and associated cellular mechanisms. Berberine, a plant alkaloid which is known to have wound healing properties shows potential to modulate regeneration. The present study aimed to explore the modulating influence of berberine on the signaling pathways involved in zebrafish larvae transected tail fin fold regeneration. Tail fin fold transection was performed on 3 dpf (days post fertilization) zebrafish larvae treated with Berberine (0.01%) and untreated control (System water (SW)). The larvae were observed under a microscope at 0, 1, 2, 3, 4, 5, hours post transection (hpt). RNA was extracted from Berberine treated and untreated (control) tail fin transected larvae at 4 hpt to perform RNA-seq analysis. PPI (protein-protein interaction) network, Shiny GO functional enrichment and topology analysis of DEGs (differentially expressed genes) was performed. Berberine treated larvae showed an accelerated regeneration growth in their transected tail fin by 4 hpt. Berberine induced accelerated regeneration is associated with the involvement of Insulin, IGF, stress response, jak-stat, cytokine, and cellular reprogramming signaling pathways as per RNA-seq analysis and String PPI network, and Shiny GO functional enrichment analysis of DEGs. Topological analysis using Cytohubba revealed <em>tnfa, stat3, jak2b, igf1, jak1, hsp90aa1.1, stat1a, stat1b, bag3, hsp70,</em> and <em>fosl1a</em> as the key Hub genes in the PPI network. The present study identifies the pathways and the Hub proteins involved in berberine induced accelerated regeneration process in zebrafish larvae.</div></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"55 ","pages":"Article 119390"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X2500002X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Humans have limited capacity to regenerate lost tissues post injury. The ability to modulate regenerative repair of tissues offers possibilities for restoring loss of tissue (organ) structure and function. Zebrafish (Danio rerio) larvae fin fold regeneration model is a simple system to study the process of regeneration and associated cellular mechanisms. Berberine, a plant alkaloid which is known to have wound healing properties shows potential to modulate regeneration. The present study aimed to explore the modulating influence of berberine on the signaling pathways involved in zebrafish larvae transected tail fin fold regeneration. Tail fin fold transection was performed on 3 dpf (days post fertilization) zebrafish larvae treated with Berberine (0.01%) and untreated control (System water (SW)). The larvae were observed under a microscope at 0, 1, 2, 3, 4, 5, hours post transection (hpt). RNA was extracted from Berberine treated and untreated (control) tail fin transected larvae at 4 hpt to perform RNA-seq analysis. PPI (protein-protein interaction) network, Shiny GO functional enrichment and topology analysis of DEGs (differentially expressed genes) was performed. Berberine treated larvae showed an accelerated regeneration growth in their transected tail fin by 4 hpt. Berberine induced accelerated regeneration is associated with the involvement of Insulin, IGF, stress response, jak-stat, cytokine, and cellular reprogramming signaling pathways as per RNA-seq analysis and String PPI network, and Shiny GO functional enrichment analysis of DEGs. Topological analysis using Cytohubba revealed tnfa, stat3, jak2b, igf1, jak1, hsp90aa1.1, stat1a, stat1b, bag3, hsp70, and fosl1a as the key Hub genes in the PPI network. The present study identifies the pathways and the Hub proteins involved in berberine induced accelerated regeneration process in zebrafish larvae.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation