{"title":"Editing the growth differentiation factor 9 gene affects porcine oocytes in vitro maturation by inactivating the maturation promoting factor","authors":"Yafei Jiao , Alian Liao , Xintong Jiang, Jinming Guo, Bingqian Mi, Chang Bei, Xinran Li, Tiantuan Jiang, Xiaohong Liu, Yaosheng Chen, Peiqing Cong, Zuyong He","doi":"10.1016/j.theriogenology.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Growth differentiation factor 9 (GDF9), an oocyte-secreted factor, plays a vital role in porcine oocyte development. However, its function during oocyte <em>in vitro</em> maturation (IVM) remains unclear. In this study, we achieved GDF9 editing in approximately 59 % of cultured oocytes by cytoplasmic injection of a pre-assembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex into porcine oocytes at the germinal vesicle (GV) stage. GDF9 editing caused significant damage to porcine oocytes during IVM. Additionally, GDF9 editing impaired mitochondrial function, increased reactive oxygen species (ROS) accumulation, and decreased glutathione (GSH) levels. The impaired IVM of GDF9-edited porcine oocytes was primarily driven by active cAMP-PKA signaling, which inhibited MOS expression, leading to the activation of the WEE1B/MYT1 kinase and inactivation of CDC25B phosphatase. This cascade resulted in the inactivation of CDK1, thereby preventing the activation of maturation-promoting factor (MPF) and inhibiting first polar body (PB1) extrusion. Our findings enhance the understanding of GDF9's regulatory role in porcine oocyte IVM and provide a theoretical foundation for improving porcine reproductive performance.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"236 ","pages":"Pages 120-136"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X25000500","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Growth differentiation factor 9 (GDF9), an oocyte-secreted factor, plays a vital role in porcine oocyte development. However, its function during oocyte in vitro maturation (IVM) remains unclear. In this study, we achieved GDF9 editing in approximately 59 % of cultured oocytes by cytoplasmic injection of a pre-assembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex into porcine oocytes at the germinal vesicle (GV) stage. GDF9 editing caused significant damage to porcine oocytes during IVM. Additionally, GDF9 editing impaired mitochondrial function, increased reactive oxygen species (ROS) accumulation, and decreased glutathione (GSH) levels. The impaired IVM of GDF9-edited porcine oocytes was primarily driven by active cAMP-PKA signaling, which inhibited MOS expression, leading to the activation of the WEE1B/MYT1 kinase and inactivation of CDC25B phosphatase. This cascade resulted in the inactivation of CDK1, thereby preventing the activation of maturation-promoting factor (MPF) and inhibiting first polar body (PB1) extrusion. Our findings enhance the understanding of GDF9's regulatory role in porcine oocyte IVM and provide a theoretical foundation for improving porcine reproductive performance.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.