MASC: Wearable Design for Infectious Disease Detection Through Machine Learning

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-02-04 DOI:10.1109/ACCESS.2025.3538518
Sumaiya Afroz Mila;Bhagawat Baanav Yedla Ravi;Md Rafiul Kabir;Sandip Ray
{"title":"MASC: Wearable Design for Infectious Disease Detection Through Machine Learning","authors":"Sumaiya Afroz Mila;Bhagawat Baanav Yedla Ravi;Md Rafiul Kabir;Sandip Ray","doi":"10.1109/ACCESS.2025.3538518","DOIUrl":null,"url":null,"abstract":"We present an innovative approach for designing a wearable solution that utilizes machine learning to systematically optimize the monitoring of vital signs for early detection of COVID-19 infections in symptomatic patients. This approach correlates sensor data trends with disease predictions, utilizing existing hospital patient data to enhance diagnosis accuracy. Our methodology offers a scalable, cost-effective solution to manage and prevent infectious diseases beyond COVID-19, addressing the limitations of traditional diagnostic methods. A functional prototype has been developed, supporting the effectiveness of continuous health monitoring in infection detection. The wearable continuously monitors key vitals such as body temperature, heart rate, respiratory rate, and oxygen saturation levels, providing an early warning system for timely medical intervention. This wearable device holds promise for transforming infectious disease detection and management, benefiting healthcare professionals and individuals alike.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"24108-24123"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10870051/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an innovative approach for designing a wearable solution that utilizes machine learning to systematically optimize the monitoring of vital signs for early detection of COVID-19 infections in symptomatic patients. This approach correlates sensor data trends with disease predictions, utilizing existing hospital patient data to enhance diagnosis accuracy. Our methodology offers a scalable, cost-effective solution to manage and prevent infectious diseases beyond COVID-19, addressing the limitations of traditional diagnostic methods. A functional prototype has been developed, supporting the effectiveness of continuous health monitoring in infection detection. The wearable continuously monitors key vitals such as body temperature, heart rate, respiratory rate, and oxygen saturation levels, providing an early warning system for timely medical intervention. This wearable device holds promise for transforming infectious disease detection and management, benefiting healthcare professionals and individuals alike.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Optimal Asynchronous Guaranteed Cost Control of Uncertain Markov Jump Systems With Actuator Saturation and Nonideal Transition Probabilities A Large-Scale Snow Depth Retrieval Method for Alaska Based on Point-Surface Fusion and Random Forest Model Path Planning for Coal Mining Masonry Robots Combined With Trajectory Optimization MASC: Wearable Design for Infectious Disease Detection Through Machine Learning Crafting the Path: Robust Query Rewriting for Information Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1