Design and Evaluation of an Electromagnetic Bounce-Type Refreshable Braille Display

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Neural Systems and Rehabilitation Engineering Pub Date : 2025-01-28 DOI:10.1109/TNSRE.2025.3535564
Dapeng Chen;Song Zhang;Lianshun Shen;Chenkai Li;Jianying Hua;Jia Liu;Aiguo Song
{"title":"Design and Evaluation of an Electromagnetic Bounce-Type Refreshable Braille Display","authors":"Dapeng Chen;Song Zhang;Lianshun Shen;Chenkai Li;Jianying Hua;Jia Liu;Aiguo Song","doi":"10.1109/TNSRE.2025.3535564","DOIUrl":null,"url":null,"abstract":"To help the blind or visually impaired (BVI) read digitally conveniently and at low cost, we propose a bounce-type actuator driven by electromagnetic force, and based on this, a refreshable Braille display (RBD) which can display both Braille and tactile graphic information is manufactured. The internal components of the bounce-type actuator include an electromagnet and two permanent magnets placed in a stepped manner. By passing current in different directions to the coil, the electromagnet can bounce up and down between the two permanent magnets under the action of magnetic force, thereby achieving changes in the raised state of the Braille dot. The permanent magnets placed in staggered positions have an attractive and supportive effect on the electromagnet, so the raised Braille dot can be locked in a specific position when the electromagnet is not powered on and provide a large latching force. In this paper, the force analysis and finite element simulation of the actuator actuation condition of the Braille dot actuator are carried out, and the refresh rate is measured experimentally to be about 16 Hz. Meanwhile, the overall refresh rate of the prototype can be up to 2.7 Hz. Benefiting from the full-latching structure, the RBD proposed in this paper is characterized by a large latching force, a high refresh rate, and an easy scalability. It also has the advantages of low cost, low energy consumption, reliability, and durability, providing an easy-to-promote tool for BVI to read digital information.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"705-716"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856226/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To help the blind or visually impaired (BVI) read digitally conveniently and at low cost, we propose a bounce-type actuator driven by electromagnetic force, and based on this, a refreshable Braille display (RBD) which can display both Braille and tactile graphic information is manufactured. The internal components of the bounce-type actuator include an electromagnet and two permanent magnets placed in a stepped manner. By passing current in different directions to the coil, the electromagnet can bounce up and down between the two permanent magnets under the action of magnetic force, thereby achieving changes in the raised state of the Braille dot. The permanent magnets placed in staggered positions have an attractive and supportive effect on the electromagnet, so the raised Braille dot can be locked in a specific position when the electromagnet is not powered on and provide a large latching force. In this paper, the force analysis and finite element simulation of the actuator actuation condition of the Braille dot actuator are carried out, and the refresh rate is measured experimentally to be about 16 Hz. Meanwhile, the overall refresh rate of the prototype can be up to 2.7 Hz. Benefiting from the full-latching structure, the RBD proposed in this paper is characterized by a large latching force, a high refresh rate, and an easy scalability. It also has the advantages of low cost, low energy consumption, reliability, and durability, providing an easy-to-promote tool for BVI to read digital information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
期刊最新文献
Enhancing Manual Wheelchair Propulsion: Incremental Assistance Levels of Pushrim-Activated Power-Assist Proportionally Reduce Physiological and Biomechanical Demands in Able-Bodied Participants. Improving Acceptance to Sensory Substitution: A study on the V2A-SS Learning Model based on Information Processing Learning Theory. The More, the Better? Evaluating the Role of EEG Preprocessing for Deep Learning Applications Locomotion Joint Angle and Moment Estimation With Soft Wearable Sensors for Personalized Exosuit Control LAST-PAIN: Learning Adaptive Spike Thresholds for Low Back Pain Biosignals Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1