Organelle-targeting activity-based hemicyanine derivatives for enhanced and selective type-I photodynamic therapy under hypoxia conditions†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-12-31 DOI:10.1039/D4QM00744A
Musa Dirak, Ayca Saymaz, Alperen Acari, Yunus Akkoc, Haluk Samet Kocak, Cansu M. Yenici, Devrim Gozuacik, Hande Gunduz and Safacan Kolemen
{"title":"Organelle-targeting activity-based hemicyanine derivatives for enhanced and selective type-I photodynamic therapy under hypoxia conditions†","authors":"Musa Dirak, Ayca Saymaz, Alperen Acari, Yunus Akkoc, Haluk Samet Kocak, Cansu M. Yenici, Devrim Gozuacik, Hande Gunduz and Safacan Kolemen","doi":"10.1039/D4QM00744A","DOIUrl":null,"url":null,"abstract":"<p >Type-I photosensitizers (PSs) have attracted great attention in recent years as they minimally rely on the tissue oxygen (<small><sup>3</sup></small>O<small><sub>2</sub></small>) to generate highly cytotoxic reactive oxygen species (ROS) in the scope of photodynamic therapy (PDT). Thus, they hold great promise for effective treatment of hypoxic cancer cells, which is a challenging task for type-II PSs. However, compared to conventional type-II PSs, the number of cancer cell selective type-I PSs is quite low. Thus, there is still a need for type-I PSs that can induce photocytotoxicity only in cancer cells without causing damage to normal tissues even under light irradiation. Additionally, targeting PSs to specific organelles has lately appeared to be a promising approach to improve the therapeutic outcome of PDT. Although a few examples of organelle-targeted type-I PS cores have emerged recently, activity-based and organelle-targeted type-I PSs have remained scarce. In this study, we report two organelle-targeted and hydrogen sulfide (H<small><sub>2</sub></small>S) responsive type-I PSs (<strong>HEHM</strong> and <strong>HEH</strong>) based on a highly modular and easily accessible heavy atom decorated hemicyanine core. <strong>HEHM</strong> localizes to mitochondria due to its cationic structure, whereas <strong>HEH</strong> targets endoplasmic reticulum (ER) as it bears an ER-targeting sulfonamide moiety, and it marks the first example of an activity-based and ER-targeted type-I PS based on a hemicyanine core. Both PSs can be selectively activated in neuroblastoma cells (SH-SY5Y) upon reacting with high levels of endogenous H<small><sub>2</sub></small>S and induce similar photocytotoxicity through a type-I PDT mechanism under both normoxic (20% O<small><sub>2</sub></small>) and hypoxic (1% O<small><sub>2</sub></small>) conditions. <strong>HEHM</strong> is shown to cause PDT-induced mitochondria stress, while <strong>HEH</strong> triggers ER stress upon LED irradiation (640 nm, 66.7 mW cm<small><sup>−2</sup></small>). Additionally, <strong>HEH</strong> is shown to induce immunogenic cell death (ICD) followed by PDT action. In contrast, negligible ROS generation and cell death are observed in normal cells, which is a critical and challenging task for any type of therapeutic modality. They also allow fluorescence imaging of cancer cells due to their emissive nature, suggesting that they function as phototheranostic agents. This study introduces a rational approach to develop new generation activity-based and organelle-targeted type-I PDT agents towards effective and selective treatment of hypoxic tumors.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 4","pages":" 648-657"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00744a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Type-I photosensitizers (PSs) have attracted great attention in recent years as they minimally rely on the tissue oxygen (3O2) to generate highly cytotoxic reactive oxygen species (ROS) in the scope of photodynamic therapy (PDT). Thus, they hold great promise for effective treatment of hypoxic cancer cells, which is a challenging task for type-II PSs. However, compared to conventional type-II PSs, the number of cancer cell selective type-I PSs is quite low. Thus, there is still a need for type-I PSs that can induce photocytotoxicity only in cancer cells without causing damage to normal tissues even under light irradiation. Additionally, targeting PSs to specific organelles has lately appeared to be a promising approach to improve the therapeutic outcome of PDT. Although a few examples of organelle-targeted type-I PS cores have emerged recently, activity-based and organelle-targeted type-I PSs have remained scarce. In this study, we report two organelle-targeted and hydrogen sulfide (H2S) responsive type-I PSs (HEHM and HEH) based on a highly modular and easily accessible heavy atom decorated hemicyanine core. HEHM localizes to mitochondria due to its cationic structure, whereas HEH targets endoplasmic reticulum (ER) as it bears an ER-targeting sulfonamide moiety, and it marks the first example of an activity-based and ER-targeted type-I PS based on a hemicyanine core. Both PSs can be selectively activated in neuroblastoma cells (SH-SY5Y) upon reacting with high levels of endogenous H2S and induce similar photocytotoxicity through a type-I PDT mechanism under both normoxic (20% O2) and hypoxic (1% O2) conditions. HEHM is shown to cause PDT-induced mitochondria stress, while HEH triggers ER stress upon LED irradiation (640 nm, 66.7 mW cm−2). Additionally, HEH is shown to induce immunogenic cell death (ICD) followed by PDT action. In contrast, negligible ROS generation and cell death are observed in normal cells, which is a critical and challenging task for any type of therapeutic modality. They also allow fluorescence imaging of cancer cells due to their emissive nature, suggesting that they function as phototheranostic agents. This study introduces a rational approach to develop new generation activity-based and organelle-targeted type-I PDT agents towards effective and selective treatment of hypoxic tumors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover Recent advances in tailored chitosan-based hydrogels for bone regeneration and repair Recent advances in nanozyme-based materials for environmental pollutant detection and remediation Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1