Zheng Gong, Qingyang Cui, Xiancheng Nie, Guoqing Zhang and Biao Chen
{"title":"Achieving dual-mode long-persistence afterglow through an aromatic furan organic host–guest system†","authors":"Zheng Gong, Qingyang Cui, Xiancheng Nie, Guoqing Zhang and Biao Chen","doi":"10.1039/D4QM00977K","DOIUrl":null,"url":null,"abstract":"<p >Pure organic long-persistence luminescence has recently garnered significant attention due to its diverse potential applications. Nonetheless, the attainment of pure organic dual-mode long-persistence afterglow with high efficiency remains a significant challenge. Herein, we report the successful realization of high-efficiency, color-tunable dual-mode room-temperature phosphorescence (RTP) along with thermally activated delayed fluorescence (TADF) of approximately 50 ms, utilizing an aromatic furan organic host–guest system. Our investigation into this system reveals two key findings: (1) the heavy-atom effect of the host and guest molecules plays distinct roles in modulating the efficiency of the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes; and (2) the dual-mode long-persistence luminescence can be effectively adjusted by manipulating the energy gap between the excited triplet states of host and guest molecules. Additionally, we demonstrated the capability for color display utilizing this host–guest system through inkjet printing.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 4","pages":" 676-683"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d4qm00977k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00977k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pure organic long-persistence luminescence has recently garnered significant attention due to its diverse potential applications. Nonetheless, the attainment of pure organic dual-mode long-persistence afterglow with high efficiency remains a significant challenge. Herein, we report the successful realization of high-efficiency, color-tunable dual-mode room-temperature phosphorescence (RTP) along with thermally activated delayed fluorescence (TADF) of approximately 50 ms, utilizing an aromatic furan organic host–guest system. Our investigation into this system reveals two key findings: (1) the heavy-atom effect of the host and guest molecules plays distinct roles in modulating the efficiency of the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes; and (2) the dual-mode long-persistence luminescence can be effectively adjusted by manipulating the energy gap between the excited triplet states of host and guest molecules. Additionally, we demonstrated the capability for color display utilizing this host–guest system through inkjet printing.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.