Achieving dual-mode long-persistence afterglow through an aromatic furan organic host–guest system†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2025-01-15 DOI:10.1039/D4QM00977K
Zheng Gong, Qingyang Cui, Xiancheng Nie, Guoqing Zhang and Biao Chen
{"title":"Achieving dual-mode long-persistence afterglow through an aromatic furan organic host–guest system†","authors":"Zheng Gong, Qingyang Cui, Xiancheng Nie, Guoqing Zhang and Biao Chen","doi":"10.1039/D4QM00977K","DOIUrl":null,"url":null,"abstract":"<p >Pure organic long-persistence luminescence has recently garnered significant attention due to its diverse potential applications. Nonetheless, the attainment of pure organic dual-mode long-persistence afterglow with high efficiency remains a significant challenge. Herein, we report the successful realization of high-efficiency, color-tunable dual-mode room-temperature phosphorescence (RTP) along with thermally activated delayed fluorescence (TADF) of approximately 50 ms, utilizing an aromatic furan organic host–guest system. Our investigation into this system reveals two key findings: (1) the heavy-atom effect of the host and guest molecules plays distinct roles in modulating the efficiency of the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes; and (2) the dual-mode long-persistence luminescence can be effectively adjusted by manipulating the energy gap between the excited triplet states of host and guest molecules. Additionally, we demonstrated the capability for color display utilizing this host–guest system through inkjet printing.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 4","pages":" 676-683"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d4qm00977k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00977k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pure organic long-persistence luminescence has recently garnered significant attention due to its diverse potential applications. Nonetheless, the attainment of pure organic dual-mode long-persistence afterglow with high efficiency remains a significant challenge. Herein, we report the successful realization of high-efficiency, color-tunable dual-mode room-temperature phosphorescence (RTP) along with thermally activated delayed fluorescence (TADF) of approximately 50 ms, utilizing an aromatic furan organic host–guest system. Our investigation into this system reveals two key findings: (1) the heavy-atom effect of the host and guest molecules plays distinct roles in modulating the efficiency of the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes; and (2) the dual-mode long-persistence luminescence can be effectively adjusted by manipulating the energy gap between the excited triplet states of host and guest molecules. Additionally, we demonstrated the capability for color display utilizing this host–guest system through inkjet printing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover Polymeric mixed ionic–electronic conductors based on quinoid–azaisoindigo for n-type organic electrochemical transistors† Achieving dual-mode long-persistence afterglow through an aromatic furan organic host–guest system† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1