A. Agrawal, V. V. Alenkov, P. Aryal, J. Beyer, B. Bhandari, R. S. Boiko, K. Boonin, O. Buzanov, C. R. Byeon, N. Chanthima, M. K. Cheoun, J. S. Choe, Seonho Choi, S. Choudhury, J. S. Chung, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, Y. M. Gavrilyuk, A. M. Gezhaev, O. Gileva, V. D. Grigorieva, V. I. Gurentsov, C. Ha, D. H. Ha, E. J. Ha, D. H. Hwnag, E. J. Jeon, J. A. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, W. G. Kang, V. V. Kazalov, S. Kempf, A. Khan, S. Khan, D. Y. Kim, G. W. Kim, H. B. Kim, Ho-Jong Kim, H. J. Kim, H. L. Kim, H. S. Kim, M. B. Kim, S. C. Kim, S. K. Kim, S. R. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. V. Kuzminov, D. H. Kwon, C. H. Lee, DongYeup Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. W. Lee, Y. C. Lee, D. S. Leonard, H. S. Lim, B. Mailyan, E. P. Makarov, P. Nyanda, Y. Oh, S. L. Olsen, S. I. Panasenko, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, O. G. Polischuk, H. Prihtiadi, S. Ra, S. S. Ratkevich, G. Rooh, M. B. Sari, J. Seo, K. M. Seo, B. Sharma, K. A. Shin, V. N. Shlegel, K. Siyeon, J. So, N. V. Sokur, J. K. Son, J. W. Song, N. Srisittipokakun, V. I. Tretyak, R. Wirawan, K. R. Woo, H. J. Yeon, Y. S. Yoon, Q. Yue, AMoRE Collaboration
{"title":"Development of MMC-based lithium molybdate cryogenic calorimeters for AMoRE-II","authors":"A. Agrawal, V. V. Alenkov, P. Aryal, J. Beyer, B. Bhandari, R. S. Boiko, K. Boonin, O. Buzanov, C. R. Byeon, N. Chanthima, M. K. Cheoun, J. S. Choe, Seonho Choi, S. Choudhury, J. S. Chung, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, Y. M. Gavrilyuk, A. M. Gezhaev, O. Gileva, V. D. Grigorieva, V. I. Gurentsov, C. Ha, D. H. Ha, E. J. Ha, D. H. Hwnag, E. J. Jeon, J. A. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, W. G. Kang, V. V. Kazalov, S. Kempf, A. Khan, S. Khan, D. Y. Kim, G. W. Kim, H. B. Kim, Ho-Jong Kim, H. J. Kim, H. L. Kim, H. S. Kim, M. B. Kim, S. C. Kim, S. K. Kim, S. R. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. V. Kuzminov, D. H. Kwon, C. H. Lee, DongYeup Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. W. Lee, Y. C. Lee, D. S. Leonard, H. S. Lim, B. Mailyan, E. P. Makarov, P. Nyanda, Y. Oh, S. L. Olsen, S. I. Panasenko, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, O. G. Polischuk, H. Prihtiadi, S. Ra, S. S. Ratkevich, G. Rooh, M. B. Sari, J. Seo, K. M. Seo, B. Sharma, K. A. Shin, V. N. Shlegel, K. Siyeon, J. So, N. V. Sokur, J. K. Son, J. W. Song, N. Srisittipokakun, V. I. Tretyak, R. Wirawan, K. R. Woo, H. J. Yeon, Y. S. Yoon, Q. Yue, AMoRE Collaboration","doi":"10.1140/epjc/s10052-024-13498-8","DOIUrl":null,"url":null,"abstract":"<div><p>The AMoRE collaboration searches for neutrinoless double beta decay of <span>\\(^{100}\\)</span>Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of <span>\\(^{100}\\)</span>Mo isotope, is under construction. This paper discusses the baseline design and characterization of the lithium molybdate cryogenic calorimeters to be used in the AMoRE-II detector modules. The results from prototype setups that incorporate new housing structures and two different crystal masses (316 g and 517–521 g), operated at 10 mK temperature, show energy resolutions (FWHM) of 7.55–8.82 keV at the 2.615 MeV <span>\\(^{208}\\)</span>Tl <span>\\(\\gamma \\)</span> line and effective light detection of 0.79–0.96 keV/MeV. The simultaneous heat and light detection enables clear separation of alpha particles with a discrimination power of 12.37–19.50 at the energy region around <span>\\(^{6}\\)</span>Li<span>\\((n,\\alpha )^3\\)</span>H with Q-value = 4.785 MeV. Promising detector performances were demonstrated at temperatures as high as 30 mK, which relaxes the temperature constraints for operating the large AMoRE-II array.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13498-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13498-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
The AMoRE collaboration searches for neutrinoless double beta decay of \(^{100}\)Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of \(^{100}\)Mo isotope, is under construction. This paper discusses the baseline design and characterization of the lithium molybdate cryogenic calorimeters to be used in the AMoRE-II detector modules. The results from prototype setups that incorporate new housing structures and two different crystal masses (316 g and 517–521 g), operated at 10 mK temperature, show energy resolutions (FWHM) of 7.55–8.82 keV at the 2.615 MeV \(^{208}\)Tl \(\gamma \) line and effective light detection of 0.79–0.96 keV/MeV. The simultaneous heat and light detection enables clear separation of alpha particles with a discrimination power of 12.37–19.50 at the energy region around \(^{6}\)Li\((n,\alpha )^3\)H with Q-value = 4.785 MeV. Promising detector performances were demonstrated at temperatures as high as 30 mK, which relaxes the temperature constraints for operating the large AMoRE-II array.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.