{"title":"Field-scale testing and numerical simulation of polymer micropiles-reinforced soil-rock bedding slopes","authors":"Zhichao Zhang, Xuefeng Tang, Xiang He, Zhenjie Cai, Anhua Gao, Rufa Huang","doi":"10.1007/s10064-025-04150-0","DOIUrl":null,"url":null,"abstract":"<div><p>Soil-rock interface landslides are common geological hazards in mountainous regions. While conventional cement-based micropiles are widely used for slope stabilization, their long curing time limits their application in emergency treatments. This study introduces polymer micropiles as a rapid-response alternative, leveraging the quick-setting and high tensile strength properties of polymer grouts. Field-scale tests and numerical simulations were performed to investigate the mechanical response and settlement deformation characteristics of the bedding slopes reinforced with polymer micropiles under loading. Results showed that polymer micropiles significantly improved slope bearing capacity, reduced crest settlement, and decreased surface displacement. Specifically, the bearing capacity of slopes reinforced with single and double rows of polymer micropiles increased by 111% and 211%, respectively, compared to the unreinforced slope. Settlement at the slope crest decreased by 76.9% and 90.4%, while lateral displacement at the slope toe was reduced by 77.8% and 92.8%. The final slope morphologies showed significant differences, with pronounced extrusion and soil detachment observed in the untreated slope, contrasted by only minor surface cracks in the polymer micropile reinforced slope. The simulations revealed that the micropiles fractured at the sliding plane when reaching the ultimate bearing capacity, indicating the compatibility of polymer micropile with the slope soils and the reinforcing effect of the micropiles. These findings demonstrate the feasibility and effectiveness of polymer micropiles for emergency landslide stabilization, offering a critical window for disaster response and permanent slope stabilization efforts.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04150-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-rock interface landslides are common geological hazards in mountainous regions. While conventional cement-based micropiles are widely used for slope stabilization, their long curing time limits their application in emergency treatments. This study introduces polymer micropiles as a rapid-response alternative, leveraging the quick-setting and high tensile strength properties of polymer grouts. Field-scale tests and numerical simulations were performed to investigate the mechanical response and settlement deformation characteristics of the bedding slopes reinforced with polymer micropiles under loading. Results showed that polymer micropiles significantly improved slope bearing capacity, reduced crest settlement, and decreased surface displacement. Specifically, the bearing capacity of slopes reinforced with single and double rows of polymer micropiles increased by 111% and 211%, respectively, compared to the unreinforced slope. Settlement at the slope crest decreased by 76.9% and 90.4%, while lateral displacement at the slope toe was reduced by 77.8% and 92.8%. The final slope morphologies showed significant differences, with pronounced extrusion and soil detachment observed in the untreated slope, contrasted by only minor surface cracks in the polymer micropile reinforced slope. The simulations revealed that the micropiles fractured at the sliding plane when reaching the ultimate bearing capacity, indicating the compatibility of polymer micropile with the slope soils and the reinforcing effect of the micropiles. These findings demonstrate the feasibility and effectiveness of polymer micropiles for emergency landslide stabilization, offering a critical window for disaster response and permanent slope stabilization efforts.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.