Federico Di Bisceglie, Javier García Navarro, Eric Lombard, Regina Kratzer, Robert Kourist, Stéphane E. Guillouet
{"title":"Conceptual Approach for Aerobic Autotrophic Gas Cultivation in Shake Flasks: Overcoming the Inhibitory Effects of Oxygen in Cupriavidus necator","authors":"Federico Di Bisceglie, Javier García Navarro, Eric Lombard, Regina Kratzer, Robert Kourist, Stéphane E. Guillouet","doi":"10.1002/biot.202400641","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study conceptualizes the design of a small-scale system (250 mL–1 L) for the autotrophic cultivation of hydrogen-oxidizing bacteria, such as the representative strain <i>Cupriavidus necator</i>. The research aimed to systematically investigate the impact of bottle volume and gas composition, particularly oxygen concentration, on the growth and performance of <i>C. necator</i> during autotrophic cultivations. To this end, customized, pressure-tight, baffled glass bottles of various sizes (250, 500, and 1000 mL) and gas mixtures with varying oxygen concentrations (4%, 8%, and 12% v/v) were tested. Growth was monitored by measuring optical density. The maximum specific growth rate (<i>µ</i><sub>max</sub>), the biomass production rate (BPR), the volumetric gas–liquid mass transfer coefficient (<i>k<sub>L</sub>a</i>), and the oxygen transfer rate were calculated. Among the various combinations, the 1000-mL bottles demonstrated the highest <i>µ</i><sub>max</sub> (0.13 h<sup>−1</sup>) and the second-highest BPR (0.074 g L<sup>−1 </sup>h<sup>−1</sup>) at an oxygen concentration of 8%, without the need to refill the headspace. The proposed small-scale system offers a swift and replicable method for concurrently investigating multiple autotrophic cultivations. In this regard, increasing the size of the bottle flask proved to be an efficient strategy to minimize the periodicity for gas refilling. Due to the inhibitory effect of oxygen, changing the liquid–gas volume ratio in hydrogen-driven shake flask cultivation had so far strongly influenced the growth rate. Our results provide a solid foundation for the scaling and optimization of small-scale cultivation of chemolithotrophic bacteria and will facilitate future parallelization and, hence, optimization of metabolic aspects.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400641","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study conceptualizes the design of a small-scale system (250 mL–1 L) for the autotrophic cultivation of hydrogen-oxidizing bacteria, such as the representative strain Cupriavidus necator. The research aimed to systematically investigate the impact of bottle volume and gas composition, particularly oxygen concentration, on the growth and performance of C. necator during autotrophic cultivations. To this end, customized, pressure-tight, baffled glass bottles of various sizes (250, 500, and 1000 mL) and gas mixtures with varying oxygen concentrations (4%, 8%, and 12% v/v) were tested. Growth was monitored by measuring optical density. The maximum specific growth rate (µmax), the biomass production rate (BPR), the volumetric gas–liquid mass transfer coefficient (kLa), and the oxygen transfer rate were calculated. Among the various combinations, the 1000-mL bottles demonstrated the highest µmax (0.13 h−1) and the second-highest BPR (0.074 g L−1 h−1) at an oxygen concentration of 8%, without the need to refill the headspace. The proposed small-scale system offers a swift and replicable method for concurrently investigating multiple autotrophic cultivations. In this regard, increasing the size of the bottle flask proved to be an efficient strategy to minimize the periodicity for gas refilling. Due to the inhibitory effect of oxygen, changing the liquid–gas volume ratio in hydrogen-driven shake flask cultivation had so far strongly influenced the growth rate. Our results provide a solid foundation for the scaling and optimization of small-scale cultivation of chemolithotrophic bacteria and will facilitate future parallelization and, hence, optimization of metabolic aspects.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.