Design Optimization of a Plate-Fin Heat Exchanger With Metaheuristic Hybrid Algorithm

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-11-06 DOI:10.1002/htj.23213
Santosh L. Pachpute, Kiran C. More
{"title":"Design Optimization of a Plate-Fin Heat Exchanger With Metaheuristic Hybrid Algorithm","authors":"Santosh L. Pachpute,&nbsp;Kiran C. More","doi":"10.1002/htj.23213","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces a novel approach to enhance the heat transfer efficiency of a plate-fin heat exchanger. The metaheuristic hybrid approach combines particle swarm optimization (PSO) with the genetic algorithm (GA). Seven critical design parameters are used as variables. The research demonstrates the effectiveness of this hybrid method through a case study based on existing literature. The numerical results show the superior performance of the hybrid genetic algorithm particle swarm optimization over conventional GA and PSO techniques. The hybrid method achieves an optimal configuration with increased accuracy in a shorter computational time, offering significant time and cost savings in the design process.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1163-1172"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel approach to enhance the heat transfer efficiency of a plate-fin heat exchanger. The metaheuristic hybrid approach combines particle swarm optimization (PSO) with the genetic algorithm (GA). Seven critical design parameters are used as variables. The research demonstrates the effectiveness of this hybrid method through a case study based on existing literature. The numerical results show the superior performance of the hybrid genetic algorithm particle swarm optimization over conventional GA and PSO techniques. The hybrid method achieves an optimal configuration with increased accuracy in a shorter computational time, offering significant time and cost savings in the design process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure Investigation of Atomized Droplet Characteristics and Heat Transfer Performance in Minimum Quantity Lubrication Cutting Technology Implementation of a Realistic Multicell CFD Model to Investigate the Thermal Characteristics Within a Solar PV Module Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1