Tianyue Wang, Yingrui Sui, Chang Miao, Yue Cui, Zhanwu Wang, Lili Yang, Fengyou Wang, Xiaoyan Liu, Bin Yao
{"title":"Synergistic Effect of Ag, Sb Dual-Cation Substitution on Cu2ZnSn (S, Se)4 High-Efficiency Solar Cells","authors":"Tianyue Wang, Yingrui Sui, Chang Miao, Yue Cui, Zhanwu Wang, Lili Yang, Fengyou Wang, Xiaoyan Liu, Bin Yao","doi":"10.1002/pip.3875","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The poor crystal quality inside an absorber layer and the presence of various harmful defects are the main obstacles restricting the properties of Cu<sub>2</sub>ZnSn (S, Se)<sub>4</sub> (CZTSSe) thin-film solar cells. Cation doping has attracted considerable research attention as a viable strategy to overcome this challenge. In this paper, based on Sb-substituted CZTSSe system, we prove that Ag partially substituting Cu may be a feasible strategy. After a series of characterization of the films, it was discovered that the crystal quality and crystallinity of the films were further improved by introducing Ag into Cu<sub>2</sub>Zn(Sb, Sn) (S, Se)<sub>4</sub> (CZTSSSe), and the concentrations of Cu<sub>Zn</sub> accepter defects and 2[Cu<sub>Zn</sub> + Sn<sub>Zn</sub>] defect clusters were effectively inhibited. At the same time, the carrier concentration is increased. The results show that when the Ag doping ratio is 15%, the photovoltaic conversion efficiency (PCE) reaches 8.34%, compared with the single-doped Sb element, the efficiency is increased by 24%. For the first time, this study investigates the collaborative effect of Sb, Ag dual-cation substitution in CZTSSe. The solar cell performance enhancement mechanism offers new potential for the advancement of CZTSSe thin-film solar cell technology in the future.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"477-487"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3875","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The poor crystal quality inside an absorber layer and the presence of various harmful defects are the main obstacles restricting the properties of Cu2ZnSn (S, Se)4 (CZTSSe) thin-film solar cells. Cation doping has attracted considerable research attention as a viable strategy to overcome this challenge. In this paper, based on Sb-substituted CZTSSe system, we prove that Ag partially substituting Cu may be a feasible strategy. After a series of characterization of the films, it was discovered that the crystal quality and crystallinity of the films were further improved by introducing Ag into Cu2Zn(Sb, Sn) (S, Se)4 (CZTSSSe), and the concentrations of CuZn accepter defects and 2[CuZn + SnZn] defect clusters were effectively inhibited. At the same time, the carrier concentration is increased. The results show that when the Ag doping ratio is 15%, the photovoltaic conversion efficiency (PCE) reaches 8.34%, compared with the single-doped Sb element, the efficiency is increased by 24%. For the first time, this study investigates the collaborative effect of Sb, Ag dual-cation substitution in CZTSSe. The solar cell performance enhancement mechanism offers new potential for the advancement of CZTSSe thin-film solar cell technology in the future.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.