Exploration of Active Substances and Its Potential Mechanism of Gancao Fuzi Decoction on Inflammatory Based on Metabolomics and Network Pharmacology

IF 1.8 3区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Rapid Communications in Mass Spectrometry Pub Date : 2025-02-10 DOI:10.1002/rcm.10007
Wei Geng, Shuang Liu, Hongjing Dong, Buddhika Niroshie Perumpuli Arachchige, Dongmei Qi, Xiao Wang
{"title":"Exploration of Active Substances and Its Potential Mechanism of Gancao Fuzi Decoction on Inflammatory Based on Metabolomics and Network Pharmacology","authors":"Wei Geng,&nbsp;Shuang Liu,&nbsp;Hongjing Dong,&nbsp;Buddhika Niroshie Perumpuli Arachchige,&nbsp;Dongmei Qi,&nbsp;Xiao Wang","doi":"10.1002/rcm.10007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Gancao Fuzi decoction (GCFZT) is a traditional Chinese formula, which has been commonly used in clinical practice to treat inflammatory diseases. However, the active substance of GCFZT in the treatment of inflammation is not fully clarified. In this study, we used orthogonal experiments to design different GCFZT formulations, resulting in a total of 16 GCFZT formulations. Subsequently, UPLC-Q-TOF-MS/MS was used to analyze the chemical composition of different formulations, and the anti-inflammatory activity differences of these formulations were evaluated through an LPS-induced RAW264.7 inflammatory cell model. Combined with machine learning algorithms such as PLS-DA and RF, four main active substances in GCFZT were screened. Finally, network pharmacology techniques were used to investigate the potential anti-inflammatory mechanisms of these main active substances, and the results showed that GCFZT mainly regulates the expression of core targets such as ALOX5, NFKB1, and TLR4 through main active substances such as chlorogenic acid, riboflavin, and formononetin, thereby affecting the NF kappa B signaling pathway, the Toll-like receptor signaling pathway, and the Th17 cell differentiation. This study provides a reference for the anti-inflammatory mechanism of GCFZT and a scientific basis for its clinical application.</p>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.10007","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Gancao Fuzi decoction (GCFZT) is a traditional Chinese formula, which has been commonly used in clinical practice to treat inflammatory diseases. However, the active substance of GCFZT in the treatment of inflammation is not fully clarified. In this study, we used orthogonal experiments to design different GCFZT formulations, resulting in a total of 16 GCFZT formulations. Subsequently, UPLC-Q-TOF-MS/MS was used to analyze the chemical composition of different formulations, and the anti-inflammatory activity differences of these formulations were evaluated through an LPS-induced RAW264.7 inflammatory cell model. Combined with machine learning algorithms such as PLS-DA and RF, four main active substances in GCFZT were screened. Finally, network pharmacology techniques were used to investigate the potential anti-inflammatory mechanisms of these main active substances, and the results showed that GCFZT mainly regulates the expression of core targets such as ALOX5, NFKB1, and TLR4 through main active substances such as chlorogenic acid, riboflavin, and formononetin, thereby affecting the NF kappa B signaling pathway, the Toll-like receptor signaling pathway, and the Th17 cell differentiation. This study provides a reference for the anti-inflammatory mechanism of GCFZT and a scientific basis for its clinical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
219
审稿时长
2.6 months
期刊介绍: Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.
期刊最新文献
Rapid Proteomic Amelogenin Sex Estimation of Human and Cattle Remains Using Untargeted Evosep-timsTOF Mass Spectrometry Determination of KGa-1b and SHCa-1 Δ′17O and δ18O via Laser Fluorination of Lithium Fluoride Clay Pellets Using MALDI-FTICR Mass Spectrometry to Enhance ZooMS Identifications of Pleistocene Bone Fragments Showing Variable Collagen Preservation. Adapting Automatic Water Samplers for the Isotopic Study of Rainfall at High Temporal Resolution Combining Laser-Induced Edition to Collision-Induced Sequencing of Digital Oligomers in a Single Gas-Phase Experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1