Framework for Regional Seismic Risk Assessments of Groups of Tall Buildings

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL Earthquake Engineering & Structural Dynamics Pub Date : 2024-12-06 DOI:10.1002/eqe.4283
James Bantis, Pablo Heresi, Alan Poulos, Eduardo Miranda
{"title":"Framework for Regional Seismic Risk Assessments of Groups of Tall Buildings","authors":"James Bantis,&nbsp;Pablo Heresi,&nbsp;Alan Poulos,&nbsp;Eduardo Miranda","doi":"10.1002/eqe.4283","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A novel probabilistic Monte Carlo-based framework to conduct regional seismic risk assessments using simplified continuous models is proposed. The hazard at rock outcrop is defined by response spectral ordinates, which are simulated to account for spatial correlation and correlation across different periods simultaneously. For sites on firm and soft soils, a simplified site response analysis using a one-dimensional continuous non-uniform shear beam model is used to transform the hazard at rock outcrops to the hazard at all sites of interest. Uncertainty in the soil properties at each site is explicitly considered. Response spectra at each site are computed at the principal orientations of each building using recently proposed directionality models that permit the estimation of the seismic hazard at specific orientations. A one-dimensional continuous coupled shear-flexural beam model is used to simulate building dynamic properties accounting for modeling uncertainty and to obtain building responses for each building. The parameters of each model only require information on the building height and the lateral resisting system. All relevant uncertainties associated with each module of the framework are explicitly incorporated and propagated. Finally, a case study of tall buildings in San Francisco subjected to a magnitude 7.0 earthquake on the Hayward Fault is presented to illustrate how the framework can be implemented.</p>\n </div>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 3","pages":"833-850"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4283","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel probabilistic Monte Carlo-based framework to conduct regional seismic risk assessments using simplified continuous models is proposed. The hazard at rock outcrop is defined by response spectral ordinates, which are simulated to account for spatial correlation and correlation across different periods simultaneously. For sites on firm and soft soils, a simplified site response analysis using a one-dimensional continuous non-uniform shear beam model is used to transform the hazard at rock outcrops to the hazard at all sites of interest. Uncertainty in the soil properties at each site is explicitly considered. Response spectra at each site are computed at the principal orientations of each building using recently proposed directionality models that permit the estimation of the seismic hazard at specific orientations. A one-dimensional continuous coupled shear-flexural beam model is used to simulate building dynamic properties accounting for modeling uncertainty and to obtain building responses for each building. The parameters of each model only require information on the building height and the lateral resisting system. All relevant uncertainties associated with each module of the framework are explicitly incorporated and propagated. Finally, a case study of tall buildings in San Francisco subjected to a magnitude 7.0 earthquake on the Hayward Fault is presented to illustrate how the framework can be implemented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
期刊最新文献
Issue information Issue information Modeling and Response of a Three-Story Steel Building With Sliding Slabs in Earthquake Motions Full-Scale Tests to Characterize the Effect of Framing Action and Slab Continuity on the Collapse Capacity of Composite Frames Under Cyclic Loading Rocking Spectrum for Cylindrical Structures Subjected to Bidirectional Pulse-Like Ground Motions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1