Artificial Intelligence Applications in Cardiac CT Imaging for Ischemic Disease Assessment

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques Pub Date : 2025-02-10 DOI:10.1111/echo.70098
Gianluca G. Siciliano, Carlotta Onnis, Jaret Barr, Marly van Assen, Carlo N. De Cecco
{"title":"Artificial Intelligence Applications in Cardiac CT Imaging for Ischemic Disease Assessment","authors":"Gianluca G. Siciliano,&nbsp;Carlotta Onnis,&nbsp;Jaret Barr,&nbsp;Marly van Assen,&nbsp;Carlo N. De Cecco","doi":"10.1111/echo.70098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Artificial intelligence (AI) has transformed medical imaging by detecting insights and patterns often imperceptible to the human eye, enhancing diagnostic accuracy and efficiency. In cardiovascular imaging, numerous AI models have been developed for cardiac computed tomography (CCT), a primary tool for assessing coronary artery disease (CAD). CCT provides comprehensive, non-invasive assessment, including plaque burden, stenosis severity, and functional assessments such as CT-derived fractional flow reserve (FFRct). Its prognostic value in predicting major adverse cardiovascular events (MACE) has increased the demand for CCT, consequently adding to radiologists’ workloads. This review aims to examine AI's role in CCT for ischemic heart disease, highlighting its potential to streamline workflows and improve the efficiency of cardiac care through machine learning and deep learning applications.</p>\n </div>","PeriodicalId":50558,"journal":{"name":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","volume":"42 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/echo.70098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has transformed medical imaging by detecting insights and patterns often imperceptible to the human eye, enhancing diagnostic accuracy and efficiency. In cardiovascular imaging, numerous AI models have been developed for cardiac computed tomography (CCT), a primary tool for assessing coronary artery disease (CAD). CCT provides comprehensive, non-invasive assessment, including plaque burden, stenosis severity, and functional assessments such as CT-derived fractional flow reserve (FFRct). Its prognostic value in predicting major adverse cardiovascular events (MACE) has increased the demand for CCT, consequently adding to radiologists’ workloads. This review aims to examine AI's role in CCT for ischemic heart disease, highlighting its potential to streamline workflows and improve the efficiency of cardiac care through machine learning and deep learning applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
6.70%
发文量
211
审稿时长
3-6 weeks
期刊介绍: Echocardiography: A Journal of Cardiovascular Ultrasound and Allied Techniques is the official publication of the International Society of Cardiovascular Ultrasound. Widely recognized for its comprehensive peer-reviewed articles, case studies, original research, and reviews by international authors. Echocardiography keeps its readership of echocardiographers, ultrasound specialists, and cardiologists well informed of the latest developments in the field.
期刊最新文献
A New Method Using the Four-Chamber View to Identify Fetuses With Subsequently Confirmed Postnatal Aortic Coarctation Changes in Left Ventricular Function Assessed by 3D Echocardiography During Severe Central Hypovolemia in Healthy Humans Breathless Nights: How Obstructive Sleep Apnea Affects the Right Heart Feasibility Study of Applying the Modified Hahn Nomenclature for Tricuspid Valve Leaflet Classification in Transthoracic Echocardiography Using the Subxiphoid Short-Axis View Multimodality Imaging Approach for a Transient Ischemic Stroke as a First Manifestation of Papillary Fibroelastoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1