Ferritin versus Liposomes: A Comparative Analysis of Protein- and Lipid-Based Drug Delivery Systems.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Pub Date : 2025-02-10 DOI:10.1021/acs.bioconjchem.4c00576
Yang Liu, Feiyan Zhu, Jiuyang He, Minmin Liang
{"title":"Ferritin versus Liposomes: A Comparative Analysis of Protein- and Lipid-Based Drug Delivery Systems.","authors":"Yang Liu, Feiyan Zhu, Jiuyang He, Minmin Liang","doi":"10.1021/acs.bioconjchem.4c00576","DOIUrl":null,"url":null,"abstract":"<p><p>Drug delivery systems (DDSs) are crucial for the controlled release and targeted delivery of therapeutic agents, enhancing the stability and specificity of small molecules, nucleic acids, or peptides and addressing challenges such as drug instability and poor tissue targeting, particularly in oncology. Over the past few decades, liposomes have become one of the most widely used DDSs due to their unique physicochemical properties and biocompatibility. In the 1990s, liposomes were approved by the FDA as the first nanomedicine for disease treatment. Ferritin, a natural protein with a hollow nanocage structure, shares many similarities in architecture and functionality with liposomes. As an innovative DDS, ferritin offers distinct advantages including inherent tumor-targeting capabilities and exceptional biocompatibility. Liposomes and ferritin represent, respectively, established and emerging approaches in drug delivery, both excelling in key features like encapsulation efficiency and biocompatibility, which align with the standards for pharmaceutical carriers. While liposomal formulations have been clinically used, challenges such as precision targeting remain unresolved. In contrast, although ferritins hold considerable promise for drug delivery, they have not yet been implemented in clinical practice. In this review, we provide a comprehensive analysis of ferritins and liposomes as drug delivery vehicles, evaluating their drug-loading capacities, tumor-targeting capabilities, biocompatibility, and therapeutic potential. On the basis of a comparison of their intended applications and inherent limitations in the context of current treatment strategies, ferritin is expected to be an ideal delivery vehicle for tumor-targeted therapy and a strong candidate for clinical translation in the near future.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Drug delivery systems (DDSs) are crucial for the controlled release and targeted delivery of therapeutic agents, enhancing the stability and specificity of small molecules, nucleic acids, or peptides and addressing challenges such as drug instability and poor tissue targeting, particularly in oncology. Over the past few decades, liposomes have become one of the most widely used DDSs due to their unique physicochemical properties and biocompatibility. In the 1990s, liposomes were approved by the FDA as the first nanomedicine for disease treatment. Ferritin, a natural protein with a hollow nanocage structure, shares many similarities in architecture and functionality with liposomes. As an innovative DDS, ferritin offers distinct advantages including inherent tumor-targeting capabilities and exceptional biocompatibility. Liposomes and ferritin represent, respectively, established and emerging approaches in drug delivery, both excelling in key features like encapsulation efficiency and biocompatibility, which align with the standards for pharmaceutical carriers. While liposomal formulations have been clinically used, challenges such as precision targeting remain unresolved. In contrast, although ferritins hold considerable promise for drug delivery, they have not yet been implemented in clinical practice. In this review, we provide a comprehensive analysis of ferritins and liposomes as drug delivery vehicles, evaluating their drug-loading capacities, tumor-targeting capabilities, biocompatibility, and therapeutic potential. On the basis of a comparison of their intended applications and inherent limitations in the context of current treatment strategies, ferritin is expected to be an ideal delivery vehicle for tumor-targeted therapy and a strong candidate for clinical translation in the near future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Ferritin versus Liposomes: A Comparative Analysis of Protein- and Lipid-Based Drug Delivery Systems. Delivery of Tempol from Polyurethane Nanocapsules to Address Oxidative Stress Post-Injury. Method for Screening Sodium Cyanoborohydride for Free Cyanide Content and Its Impact on Bioconjugation Chemistry. Development of Transiently Strainable Benzocycloheptenes for Catalyst-Free, Visible-Light-Mediated [3 + 2]-Cycloadditions. Nanoscale Effects in the Room-Temperature UV-Visible Photoluminescence from Silica Particles and Its Cancer Cell Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1