{"title":"Silica-based Materials for Mercury Detection and Removal: A Chelation-Free Solution.","authors":"Thanudkit Jitjaroendee, Supphachok Chanmungkalakul, Vuthichai Ervithayasuporn, Supavadee Kiatisevi","doi":"10.1002/asia.202401591","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce a chelation-free approach to the dual-functional detection and removal of Hg2+ ions using two novel silica-based materials, AnSiO2 and PySiO2, functionalized with anthracene and pyrene, respectively. These materials were synthesized via a two-step process involving the direct condensation of triethoxyvinylsilane onto silica gel surfaces, followed by Heck coupling with 9-bromoanthracene and 1-bromopyrene, respectively. They exhibit strong fluorescence emission in aqueous solutions, particularly at pH 6. Upon exposure to Hg2+ ions, both materials undergo significant fluorescence quenching, enabling sensitive and selective detection of Hg2+. PySiO2 demonstrated superior performance compared to AnSiO2, with a lower detection limit (0.29 µM) and a higher Stern-Volmer constant (2 × 106 M-1). Additionally, PySiO2 shows a higher adsorption capacity for Hg2+, reaching 54.04 mg/g, as confirmed by ICP-MS analysis. The sensing mechanism involves charge-dipole and π-electron interactions, supported by spectroscopic analyses. Reusable for four cycles, PySiO2 effectively removes Hg2+ from aquaculture water, showcasing its potential for scalable, cost-effective, and simultaneous detection and remediation of mercury in real-world applications.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401591"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401591","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce a chelation-free approach to the dual-functional detection and removal of Hg2+ ions using two novel silica-based materials, AnSiO2 and PySiO2, functionalized with anthracene and pyrene, respectively. These materials were synthesized via a two-step process involving the direct condensation of triethoxyvinylsilane onto silica gel surfaces, followed by Heck coupling with 9-bromoanthracene and 1-bromopyrene, respectively. They exhibit strong fluorescence emission in aqueous solutions, particularly at pH 6. Upon exposure to Hg2+ ions, both materials undergo significant fluorescence quenching, enabling sensitive and selective detection of Hg2+. PySiO2 demonstrated superior performance compared to AnSiO2, with a lower detection limit (0.29 µM) and a higher Stern-Volmer constant (2 × 106 M-1). Additionally, PySiO2 shows a higher adsorption capacity for Hg2+, reaching 54.04 mg/g, as confirmed by ICP-MS analysis. The sensing mechanism involves charge-dipole and π-electron interactions, supported by spectroscopic analyses. Reusable for four cycles, PySiO2 effectively removes Hg2+ from aquaculture water, showcasing its potential for scalable, cost-effective, and simultaneous detection and remediation of mercury in real-world applications.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).