Evaluation of a Novel Gd-FAPI Dimer Molecular Probe Targeting Fibroblast Activation Protein for Imaging of Solid Tumors.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-10 DOI:10.1021/acs.molpharmaceut.4c01175
Xiaohui Wang, Caiyu Zhuang, Xinhui Zheng, Xiaolei Zhang, Zhijian Han, Renhua Wu
{"title":"Evaluation of a Novel Gd-FAPI Dimer Molecular Probe Targeting Fibroblast Activation Protein for Imaging of Solid Tumors.","authors":"Xiaohui Wang, Caiyu Zhuang, Xinhui Zheng, Xiaolei Zhang, Zhijian Han, Renhua Wu","doi":"10.1021/acs.molpharmaceut.4c01175","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment. Fibroblast activation protein (FAP) is overexpressed in CAFs. FAP-targeted molecular imaging agents, including the FAP inhibitors (FAPIs), have shown promising results in tumor diagnosis. We aimed to design a Gd-labeled FAPI Dimer, Gd-DOTA-Suc-Lys-(FAPI04)<sub>2</sub>, to optimize the pharmacokinetics and evaluate its potential capacity for targeting FAP-positive solid tumors in vivo. The Gd-labeled FAPI Dimer was successfully synthesized with exceeding 98% purity. Preclinical pharmacokinetics were determined in assessed FAP-positive U87 cell-derived xenografts and FAP-negative C6-derived xenografts using small-animal T1-weighted 7.0T MR imaging. The longitudinal correlation coefficient (<i>r</i>1) of the agent was 3.813 mM<sup>-1</sup>·S<sup>-1</sup>. The administration of the Gd-FAPI04 Dimer probe showed a notable enhancement of tumor contrast on T1-weighted whole-body MRI. At 10 and 30 minutes post-injection, the U87 subcutaneous tumor demonstrated significantly greater contrast enhancement than the C6 subcutaneous tumor (<i>P <0.05)</i>. In vivo, the safety of the Gd-FAPI-04 Dimer probe was evaluated, which showed no tissue damage in vital organs like the heart, liver, spleen, lung, and kidneys, as indicated by unchanged morphology compared to a normal saline control group. The novel Gd-FAPI04 Dimer molecular probe, Gd-DOTA-Suc-Lys-(FAPI-04)<sub>2</sub> specifically targeting FAP may serve as a safe and promising tool for the diagnostic imaging of solid tumors.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01175","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment. Fibroblast activation protein (FAP) is overexpressed in CAFs. FAP-targeted molecular imaging agents, including the FAP inhibitors (FAPIs), have shown promising results in tumor diagnosis. We aimed to design a Gd-labeled FAPI Dimer, Gd-DOTA-Suc-Lys-(FAPI04)2, to optimize the pharmacokinetics and evaluate its potential capacity for targeting FAP-positive solid tumors in vivo. The Gd-labeled FAPI Dimer was successfully synthesized with exceeding 98% purity. Preclinical pharmacokinetics were determined in assessed FAP-positive U87 cell-derived xenografts and FAP-negative C6-derived xenografts using small-animal T1-weighted 7.0T MR imaging. The longitudinal correlation coefficient (r1) of the agent was 3.813 mM-1·S-1. The administration of the Gd-FAPI04 Dimer probe showed a notable enhancement of tumor contrast on T1-weighted whole-body MRI. At 10 and 30 minutes post-injection, the U87 subcutaneous tumor demonstrated significantly greater contrast enhancement than the C6 subcutaneous tumor (P <0.05). In vivo, the safety of the Gd-FAPI-04 Dimer probe was evaluated, which showed no tissue damage in vital organs like the heart, liver, spleen, lung, and kidneys, as indicated by unchanged morphology compared to a normal saline control group. The novel Gd-FAPI04 Dimer molecular probe, Gd-DOTA-Suc-Lys-(FAPI-04)2 specifically targeting FAP may serve as a safe and promising tool for the diagnostic imaging of solid tumors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Multifunctional Liposome Delivery System Based on Ursodeoxycholic Acid Sodium for the Encapsulation of Silibinin and Combined Treatment of Alcoholic Liver Injury. Nitroaromatic Compounds Dictate Electrochemical Properties of Escherichia coli by Manipulating the Cellular Membrane. 68Ga-FAPI Small Animal PET/CT in Rats with Peritoneal Fibrosis and the Therapeutic Effect of Sodium Butyrate. Correction to "Enhancing the Antitumor Effect of Doxorubicin with Photosensitive Metal-Organic Framework Nanoparticles against Breast Cancer". Optimizing Triglyceride Prodrugs of a Model Immunomodulator: Conjugation through the Phenol of Mycophenolic Acid (MPA) Markedly Promotes Lymphatic Drug Transport.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1