Epidermal growth factor dampens pro-inflammatory gene expression induced by interferon-gamma in global transcriptome analysis of keratinocytes.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-02-10 DOI:10.1186/s12864-025-11237-1
David C Gibbs, Myles R McCrary, Carlos S Moreno, Lindsey Seldin, Chaoran Li, Nourine A H Kamili, Brian P Pollack
{"title":"Epidermal growth factor dampens pro-inflammatory gene expression induced by interferon-gamma in global transcriptome analysis of keratinocytes.","authors":"David C Gibbs, Myles R McCrary, Carlos S Moreno, Lindsey Seldin, Chaoran Li, Nourine A H Kamili, Brian P Pollack","doi":"10.1186/s12864-025-11237-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epidermal growth factor receptor inhibitors (EGFRIs) are used to treat certain cancers but frequently cause cutaneous inflammation that can hinder treatment. This is due in part to the effects of EGFRIs on pro-inflammatory signaling by interferon-γ (IFN-γ). However, the impact of EGFR ligands (i.e. EGF) on interferon signaling is unclear. The purpose of this study was to investigate the impact of EGF on IFN-γ transcriptional responses on a genome-wide scale in keratinocytes.</p><p><strong>Methods: </strong>RNA-seq was performed in human keratinocyte (HaCaT) cells treated with IFN-γ, EGF, both, or neither (control). Differentially expressed genes in each treatment group, relative to control, were identified using DESeq2 with a false discovery rate (FDR) threshold of 0.01. Associated biologic processes and gene pathways were examined in gene-set enrichment analyses. Correlations between gene expression were investigated in vivo using RNA-seq data from biopsies of psoriatic and matched normal skin, which were collected from 116 individuals with psoriasis enrolled in the AMAGINE randomized clinical trials.</p><p><strong>Results: </strong>Of the 2,792 differentially expressed genes following IFN-γ treatment, 2,083 (75%) were no longer differentially expressed when EGF was added. IFN-γ-induced genes with significantly lower expression in the presence of EGF included CXCL10, IL-6, IL-1 A, HLA-DMA, and GBP5 (activator of the NLRP3 inflammasome); the top enriched biologic processes and pathways were related to MHC-class II antigen presentation (GO:0019886) and cytokine signaling (KEGG:04060). Consistent with our in vitro findings, the expression of CXCL10 and GBP5, as well as the combined expression z-scores of genes in the enriched MHC-class II and cytokine signaling pathways, were significantly lower in skin biopsies with higher EGF expression compared to those with lower EGF expression among individuals with psoriasis.</p><p><strong>Conclusions: </strong>Our findings suggest that the pro-inflammatory IFN-γ-induced transcriptome may be globally attenuated by EGF in keratinocytes, supporting an immunomodulatory role of EGF in the skin. These studies provide insights for the non-canonical immunomodulatory role of EGF signaling and why blocking EGFR signaling (e.g., with EGFRIs) can cause cutaneous inflammation.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"122"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11237-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Epidermal growth factor receptor inhibitors (EGFRIs) are used to treat certain cancers but frequently cause cutaneous inflammation that can hinder treatment. This is due in part to the effects of EGFRIs on pro-inflammatory signaling by interferon-γ (IFN-γ). However, the impact of EGFR ligands (i.e. EGF) on interferon signaling is unclear. The purpose of this study was to investigate the impact of EGF on IFN-γ transcriptional responses on a genome-wide scale in keratinocytes.

Methods: RNA-seq was performed in human keratinocyte (HaCaT) cells treated with IFN-γ, EGF, both, or neither (control). Differentially expressed genes in each treatment group, relative to control, were identified using DESeq2 with a false discovery rate (FDR) threshold of 0.01. Associated biologic processes and gene pathways were examined in gene-set enrichment analyses. Correlations between gene expression were investigated in vivo using RNA-seq data from biopsies of psoriatic and matched normal skin, which were collected from 116 individuals with psoriasis enrolled in the AMAGINE randomized clinical trials.

Results: Of the 2,792 differentially expressed genes following IFN-γ treatment, 2,083 (75%) were no longer differentially expressed when EGF was added. IFN-γ-induced genes with significantly lower expression in the presence of EGF included CXCL10, IL-6, IL-1 A, HLA-DMA, and GBP5 (activator of the NLRP3 inflammasome); the top enriched biologic processes and pathways were related to MHC-class II antigen presentation (GO:0019886) and cytokine signaling (KEGG:04060). Consistent with our in vitro findings, the expression of CXCL10 and GBP5, as well as the combined expression z-scores of genes in the enriched MHC-class II and cytokine signaling pathways, were significantly lower in skin biopsies with higher EGF expression compared to those with lower EGF expression among individuals with psoriasis.

Conclusions: Our findings suggest that the pro-inflammatory IFN-γ-induced transcriptome may be globally attenuated by EGF in keratinocytes, supporting an immunomodulatory role of EGF in the skin. These studies provide insights for the non-canonical immunomodulatory role of EGF signaling and why blocking EGFR signaling (e.g., with EGFRIs) can cause cutaneous inflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development. The case-only design is a powerful approach to detect interactions but should be used with caution. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. Analysis and identification of mitochondria-related genes associated with age-related hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1