Regulatory mechanism of inhibitory interneurons with time-delay on epileptic seizures under sinusoidal sensory stimulation.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-02-05 DOI:10.1007/s11571-025-10227-z
Zhihui Wang, Xindan Wei, Lixia Duan
{"title":"Regulatory mechanism of inhibitory interneurons with time-delay on epileptic seizures under sinusoidal sensory stimulation.","authors":"Zhihui Wang, Xindan Wei, Lixia Duan","doi":"10.1007/s11571-025-10227-z","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a neurological disorder in which complex electrophysiological processes are closely linked to inherent nonlinear kinetic properties. This study investigates the effects of sinusoidal sensory stimulation bias and time-delay on the dynamics of epileptic seizures within a corticothalamic neural network model. The results indicate that an increase in sensory stimulation bias can prematurely terminate seizures, and high-frequency stimulation can induce a phenomenon of frequency resonance. Meanwhile, discharge states transitions are associated with the emergence of bifurcation points. Time-delay exerts a significant regulatory influence on pathways with delay embedding (I2-PY), whereas its impact on pathways without delay embedding (I1-I1 and thalamic relay nucleus (TC)-I2) is negligible. Under sinusoidal sensory stimulation, the responses of three pathways (I1-I1, I1-PY, and I2-PY) associated with inhibitory interneurons reveal that the inhibitory properties of interneurons can suppress seizures; however, an excessively strong inhibitory effect may also precipitate seizures and facilitate state transitions. These findings contribute to a deeper understanding of seizure dynamics and may guide future research in the transmission and evolution of seizures.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"37"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10227-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a neurological disorder in which complex electrophysiological processes are closely linked to inherent nonlinear kinetic properties. This study investigates the effects of sinusoidal sensory stimulation bias and time-delay on the dynamics of epileptic seizures within a corticothalamic neural network model. The results indicate that an increase in sensory stimulation bias can prematurely terminate seizures, and high-frequency stimulation can induce a phenomenon of frequency resonance. Meanwhile, discharge states transitions are associated with the emergence of bifurcation points. Time-delay exerts a significant regulatory influence on pathways with delay embedding (I2-PY), whereas its impact on pathways without delay embedding (I1-I1 and thalamic relay nucleus (TC)-I2) is negligible. Under sinusoidal sensory stimulation, the responses of three pathways (I1-I1, I1-PY, and I2-PY) associated with inhibitory interneurons reveal that the inhibitory properties of interneurons can suppress seizures; however, an excessively strong inhibitory effect may also precipitate seizures and facilitate state transitions. These findings contribute to a deeper understanding of seizure dynamics and may guide future research in the transmission and evolution of seizures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癫痫是一种神经系统疾病,其中复杂的电生理过程与固有的非线性动力学特性密切相关。本研究探讨了正弦感觉刺激偏差和时间延迟对皮质-丘脑神经网络模型中癫痫发作动态的影响。结果表明,感觉刺激偏差的增加会提前终止癫痫发作,高频刺激会诱发频率共振现象。同时,放电状态的转换与分叉点的出现有关。时间延迟对有延迟嵌入的通路(I2-PY)有显著的调节作用,而对无延迟嵌入的通路(I1-I1 和丘脑中继核(TC)-I2)的影响则微乎其微。在正弦波感觉刺激下,与抑制性中间神经元相关的三条通路(I1-I1、I1-PY 和 I2-PY)的反应显示,中间神经元的抑制特性可以抑制癫痫发作;然而,过强的抑制作用也可能促使癫痫发作并促进状态转换。这些发现有助于加深对癫痫发作动态的理解,并可指导今后对癫痫发作的传播和演变的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Metacognition of one's strategic planning in decision-making: the contribution of EEG correlates and individual differences. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Neural oscillations predict flow experience. EEG-based cross-subject passive music pitch perception using deep learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1