Probiotic characteristics and survival of a multi-strain lactic acid bacteria consortium in simulated gut model.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Folia microbiologica Pub Date : 2025-02-09 DOI:10.1007/s12223-025-01244-w
Muhammad Nadeem Khan, Saeeda Bashir, Afifa Afzal, Naghmana Andleeb, Lukasz Krych, Dennis Sandris Nielsen, Muhammad Imran
{"title":"Probiotic characteristics and survival of a multi-strain lactic acid bacteria consortium in simulated gut model.","authors":"Muhammad Nadeem Khan, Saeeda Bashir, Afifa Afzal, Naghmana Andleeb, Lukasz Krych, Dennis Sandris Nielsen, Muhammad Imran","doi":"10.1007/s12223-025-01244-w","DOIUrl":null,"url":null,"abstract":"<p><p>Dahi, a traditional yet underexplored fermented milk product from Pakistan, harbors diverse lactic acid bacteria (LAB) that have potential as probiotics. These bacteria could be used for therapeutic purposes, beneficial modulation of gut microbiota, and in the formulation of functional foods and feeds. This study aimed to isolate and characterize probiotic LAB from dahi, assess their survival in simulated gastrointestinal conditions, and evaluate their safety and probiotic potential, both phenotypically and genotypically. A total of 143 isolates from 37 samples were evaluated for probiotic traits, including acid and bile tolerance, antibacterial activity, cholesterol-lowering capacity, and antioxidant activity. The strains were also tested for antibiotic sensitivity and safety through in vitro tests and genomic analysis. A multi-strain probiotic consortium was developed and tested for enhanced functionality. Out of 143 isolates, 62 LAB strains were identified. These strains demonstrated significant survival under acidic (pH 2) and bile conditions. Antibacterial activity against pathogens ranged from 51 to 88%. The strains exhibited high cholesterol removal (up to 98%) and antioxidant activity (up to 76%). Genomic analysis revealed the presence of key probiotic-related genes, including those for acid resistance, bile salt hydrolase, and adhesion. All strains were sensitive to EFSA-recommended antibiotics and exhibited no hemolytic or DNase activity, confirming their safety. The multi-strain consortium showed superior probiotic potential and survival in simulated gastrointestinal conditions. LAB strains isolated from dahi possess strong probiotic potential, confirmed through in vitro and genomic safety assessments. The multi-strain consortium holds promise for applications.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01244-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dahi, a traditional yet underexplored fermented milk product from Pakistan, harbors diverse lactic acid bacteria (LAB) that have potential as probiotics. These bacteria could be used for therapeutic purposes, beneficial modulation of gut microbiota, and in the formulation of functional foods and feeds. This study aimed to isolate and characterize probiotic LAB from dahi, assess their survival in simulated gastrointestinal conditions, and evaluate their safety and probiotic potential, both phenotypically and genotypically. A total of 143 isolates from 37 samples were evaluated for probiotic traits, including acid and bile tolerance, antibacterial activity, cholesterol-lowering capacity, and antioxidant activity. The strains were also tested for antibiotic sensitivity and safety through in vitro tests and genomic analysis. A multi-strain probiotic consortium was developed and tested for enhanced functionality. Out of 143 isolates, 62 LAB strains were identified. These strains demonstrated significant survival under acidic (pH 2) and bile conditions. Antibacterial activity against pathogens ranged from 51 to 88%. The strains exhibited high cholesterol removal (up to 98%) and antioxidant activity (up to 76%). Genomic analysis revealed the presence of key probiotic-related genes, including those for acid resistance, bile salt hydrolase, and adhesion. All strains were sensitive to EFSA-recommended antibiotics and exhibited no hemolytic or DNase activity, confirming their safety. The multi-strain consortium showed superior probiotic potential and survival in simulated gastrointestinal conditions. LAB strains isolated from dahi possess strong probiotic potential, confirmed through in vitro and genomic safety assessments. The multi-strain consortium holds promise for applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
期刊最新文献
Probiotic characteristics and survival of a multi-strain lactic acid bacteria consortium in simulated gut model. Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications. Nano-coating with silicon dioxide to reduce the occurrence of bacterial contamination in a pig abattoir drinking system. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1