Identification of EGR1 as a Key Diagnostic Biomarker in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Through Machine Learning and Immune Analysis.

IF 4.2 2区 医学 Q2 IMMUNOLOGY Journal of Inflammation Research Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S499396
Xuanlin Wu, Tao Pan, Zhihao Fang, Titi Hui, Xiaoxiao Yu, Changxu Liu, Zihao Guo, Chang Liu
{"title":"Identification of EGR1 as a Key Diagnostic Biomarker in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Through Machine Learning and Immune Analysis.","authors":"Xuanlin Wu, Tao Pan, Zhihao Fang, Titi Hui, Xiaoxiao Yu, Changxu Liu, Zihao Guo, Chang Liu","doi":"10.2147/JIR.S499396","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), as a common chronic liver condition globally, is experiencing an increasing incidence rate which poses significant health risks. Despite this, the detailed mechanisms underlying the disease's onset and progression remain poorly understood. In this study, we aim to identify effective diagnostic biomarkers for MASLD using microarray data combined with machine learning techniques, which will aid in further understanding the pathogenesis of MASLD.</p><p><strong>Methods: </strong>We collected six datasets from the Gene Expression Omnibus (GEO) database, using five of them as training sets and one as a validation set. We employed three machine learning methods-LASSO, SVM, and Random Forest (RF)-to identify hub genes associated with MASLD. These genes were further validated using the external dataset GSE164760. Additionally, functional enrichment analysis, immune infiltration analysis, and immune function analysis were conducted. A TF-miRNA-mRNA network was constructed, and single-cell RNA sequencing was used to determine the distribution of key genes within key cell clusters. Finally, the expression of the key genes was further validated using the palmitic acid-induced AML-12 cell line and the MCD mouse model.</p><p><strong>Results: </strong>In this study, through differential gene expression (DEGs) analysis and machine learning techniques, we successfully identified 10 hub genes. Among these, the key gene EGR1 was validated and screened using an external dataset, with an area under the curve (AUC) of 0.882. Enrichment analyses and immune infiltration assessments revealed multiple pathways involving EGR1 in the pathogenesis and progression of MASLD, showing significant correlations with various immune cells. Furthermore, additional cellular experiments and animal model validations confirmed that the expression trends of EGR1 are highly consistent with our analytical findings.</p><p><strong>Conclusion: </strong>Our research has confirmed EGR1 as a key gene in MASLD, providing novel insights into the disease's pathogenesis and identifying new therapeutic targets for its treatment.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"1639-1656"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S499396","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), as a common chronic liver condition globally, is experiencing an increasing incidence rate which poses significant health risks. Despite this, the detailed mechanisms underlying the disease's onset and progression remain poorly understood. In this study, we aim to identify effective diagnostic biomarkers for MASLD using microarray data combined with machine learning techniques, which will aid in further understanding the pathogenesis of MASLD.

Methods: We collected six datasets from the Gene Expression Omnibus (GEO) database, using five of them as training sets and one as a validation set. We employed three machine learning methods-LASSO, SVM, and Random Forest (RF)-to identify hub genes associated with MASLD. These genes were further validated using the external dataset GSE164760. Additionally, functional enrichment analysis, immune infiltration analysis, and immune function analysis were conducted. A TF-miRNA-mRNA network was constructed, and single-cell RNA sequencing was used to determine the distribution of key genes within key cell clusters. Finally, the expression of the key genes was further validated using the palmitic acid-induced AML-12 cell line and the MCD mouse model.

Results: In this study, through differential gene expression (DEGs) analysis and machine learning techniques, we successfully identified 10 hub genes. Among these, the key gene EGR1 was validated and screened using an external dataset, with an area under the curve (AUC) of 0.882. Enrichment analyses and immune infiltration assessments revealed multiple pathways involving EGR1 in the pathogenesis and progression of MASLD, showing significant correlations with various immune cells. Furthermore, additional cellular experiments and animal model validations confirmed that the expression trends of EGR1 are highly consistent with our analytical findings.

Conclusion: Our research has confirmed EGR1 as a key gene in MASLD, providing novel insights into the disease's pathogenesis and identifying new therapeutic targets for its treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
期刊最新文献
Effects of Baicalin on Gout Based on Network Pharmacology, Molecular Docking, and in vitro Experiments. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. Disruption of Gut Microbiota and Associated Fecal Metabolites in Collagen-Induced Arthritis Mice During the Early Stage. Elevated Circulating Adipocyte-Fatty Acid Binding Protein Levels Predict Incident Ischemic Cardiovascular Events in a Longitudinal and Prospective AMI Aging Study. Exploring Inflammatory Changes in the Peripheral Blood of Type 2 Diabetes Mellitus in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1