POLM inhibits porcine epidemic diarrhea virus replication by degrading multiple viral structural proteins.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-02-10 DOI:10.1128/jvi.02278-24
Xinyu Cao, Yingyu Liu, Wu Tong, Wenzhen Qin, Xinyu Yang, Hai Yu, Hao Zheng, Wen Zhang, Guangzhi Tong, Ning Kong, Tongling Shan
{"title":"POLM inhibits porcine epidemic diarrhea virus replication by degrading multiple viral structural proteins.","authors":"Xinyu Cao, Yingyu Liu, Wu Tong, Wenzhen Qin, Xinyu Yang, Hai Yu, Hao Zheng, Wen Zhang, Guangzhi Tong, Ning Kong, Tongling Shan","doi":"10.1128/jvi.02278-24","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine epidemic diarrhea, as a porcine epidemic diarrhea virus (PEDV)-induced infectious intestinal condition typified by diarrhea, emesis, dehydration, and anorexia, leads to death rates as high as 100% among suckling piglets. Given the existing commercial vaccines, it is essential to study host-virus interactions and formulate efficient anti-viral regimes. This study concerned a host factor POLM (a DNA polymerase family member) that exerts an anti-viral effect against PEDV proliferation. Our results indicated that POLM expression was increased following PEDV infection and was regulated by the transcription factor FOXA1. In addition, our findings indicated that POLM targeted and degraded PEDV structural proteins (N, S2, and M) by the autophagy pathway to inhibit PEDV proliferation. POLM could recruit the E3 ubiquitination ligase MARCH8 for N, S2, and M protein ubiquitination, which was subsequently recognized by p62, a cargo receptor, for translocation to the autophagic lysosome, therefore degrading the N, S2, and M proteins and preventing PEDV proliferation. In summary, we showed a novel therapeutic target for combating PEDV, i.e., using the POLM-MARCH8-p62-autophagosome pathway to degrade the PEDV N, S2, and M proteins.IMPORTANCEPEDV is a coronavirus that causes high mortality in piglets, which poses significant economic damage to swine farming. During PEDV infection, the host cells may promote the natural anti-viral immune response to suppress viral replication through a variety of potential host factors. In this study, we found upregulation of a host factor POLM by FOXA1 (a transcription factor) during PEDV infection. It was indicated that POLM could be a new anti-viral protein against the PEDV replication, which interacted with MARCH8 (an E3 ubiquitin ligase) and p62 (a cargo receptor) to facilitate the PEDV N, S2, and M protein degradation via the autophagy process. Apart from elucidating a previously unidentified anti-viral function of POLM, this study also provides a novel perspective for studying host anti-viral factors that act as regulators of anti-PEDV protein degrading pathways.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0227824"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02278-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Porcine epidemic diarrhea, as a porcine epidemic diarrhea virus (PEDV)-induced infectious intestinal condition typified by diarrhea, emesis, dehydration, and anorexia, leads to death rates as high as 100% among suckling piglets. Given the existing commercial vaccines, it is essential to study host-virus interactions and formulate efficient anti-viral regimes. This study concerned a host factor POLM (a DNA polymerase family member) that exerts an anti-viral effect against PEDV proliferation. Our results indicated that POLM expression was increased following PEDV infection and was regulated by the transcription factor FOXA1. In addition, our findings indicated that POLM targeted and degraded PEDV structural proteins (N, S2, and M) by the autophagy pathway to inhibit PEDV proliferation. POLM could recruit the E3 ubiquitination ligase MARCH8 for N, S2, and M protein ubiquitination, which was subsequently recognized by p62, a cargo receptor, for translocation to the autophagic lysosome, therefore degrading the N, S2, and M proteins and preventing PEDV proliferation. In summary, we showed a novel therapeutic target for combating PEDV, i.e., using the POLM-MARCH8-p62-autophagosome pathway to degrade the PEDV N, S2, and M proteins.IMPORTANCEPEDV is a coronavirus that causes high mortality in piglets, which poses significant economic damage to swine farming. During PEDV infection, the host cells may promote the natural anti-viral immune response to suppress viral replication through a variety of potential host factors. In this study, we found upregulation of a host factor POLM by FOXA1 (a transcription factor) during PEDV infection. It was indicated that POLM could be a new anti-viral protein against the PEDV replication, which interacted with MARCH8 (an E3 ubiquitin ligase) and p62 (a cargo receptor) to facilitate the PEDV N, S2, and M protein degradation via the autophagy process. Apart from elucidating a previously unidentified anti-viral function of POLM, this study also provides a novel perspective for studying host anti-viral factors that act as regulators of anti-PEDV protein degrading pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Zika virus inhibits cell death by inhibiting the expression of NLRP3 and A20. Perturbation of de novo lipogenesis hinders MERS-CoV assembly and release, but not the biogenesis of viral replication organelles. Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1