Dose Build-up of High-energy 1H and 4He Ions in Standard, Innovative and In Situ Shielding Materials for Space Radiation: Measurements and Simulations.

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2025-02-10 DOI:10.1667/RADE-24-00244.1
Francesca Luoni, Uli Weber, Alica Karin Lang, Moritz Westermayer, Felix Horst, Marcello Baricco, Luca Bocchini, Martina Giraudo, Giovanni Santin, Christoph Schuy, Marco Durante, Daria Boscolo
{"title":"Dose Build-up of High-energy 1H and 4He Ions in Standard, Innovative and In Situ Shielding Materials for Space Radiation: Measurements and Simulations.","authors":"Francesca Luoni, Uli Weber, Alica Karin Lang, Moritz Westermayer, Felix Horst, Marcello Baricco, Luca Bocchini, Martina Giraudo, Giovanni Santin, Christoph Schuy, Marco Durante, Daria Boscolo","doi":"10.1667/RADE-24-00244.1","DOIUrl":null,"url":null,"abstract":"<p><p>Galactic cosmic rays (GCR) are among the biggest hindrances to crewed space exploration. The ions contributing the most to fluence and absorbed dose in free space are 1H and 4He. In addition, their contribution to dose equivalent increases behind thick shields. In this work, the results of depth-dose measurements performed with high-energy 1H and 4He ions (2 GeV and 480 MeV 1H, and 430 MeV/u 4He) in structural (aluminum alloy), standard (PMMA and high-density polyethylene), innovative (lithium hydride) and in situ (Moon regolith simulant) shielding materials are presented. A strong dose build-up effect, due to target fragments and secondary protons, is observed in the first part of the Bragg curve for all the tested ion beams. The experimental results are compared to the Monte Carlo simulation tools most used for radiation protection in space, i.e., different physics lists of Geant4, PHITS, and FLUKA.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00244.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Galactic cosmic rays (GCR) are among the biggest hindrances to crewed space exploration. The ions contributing the most to fluence and absorbed dose in free space are 1H and 4He. In addition, their contribution to dose equivalent increases behind thick shields. In this work, the results of depth-dose measurements performed with high-energy 1H and 4He ions (2 GeV and 480 MeV 1H, and 430 MeV/u 4He) in structural (aluminum alloy), standard (PMMA and high-density polyethylene), innovative (lithium hydride) and in situ (Moon regolith simulant) shielding materials are presented. A strong dose build-up effect, due to target fragments and secondary protons, is observed in the first part of the Bragg curve for all the tested ion beams. The experimental results are compared to the Monte Carlo simulation tools most used for radiation protection in space, i.e., different physics lists of Geant4, PHITS, and FLUKA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Dose Build-up of High-energy 1H and 4He Ions in Standard, Innovative and In Situ Shielding Materials for Space Radiation: Measurements and Simulations. Partial-body Models of Radiation Exposure. Protective Effects and Mechanisms of Astragaloside on Microwave Radiation-induced Cardiac Injury. The Role of Glutamine Synthetase on the Sensitivity to Radiotherapy of Hepatocellular Carcinoma. Pharmacokinetic and Metabolomic Studies with BBT-059 in Nonhuman Primates Exposed to Total-Body Gamma Radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1