Hematopoietic stem cells: Understanding the mechanisms to unleash the therapeutic potential of hematopoietic stem cell transplantation.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2025-02-10 DOI:10.1186/s13287-024-04126-z
Amjad Ahmed Aljagthmi, Amal Kamal Abdel-Aziz
{"title":"Hematopoietic stem cells: Understanding the mechanisms to unleash the therapeutic potential of hematopoietic stem cell transplantation.","authors":"Amjad Ahmed Aljagthmi, Amal Kamal Abdel-Aziz","doi":"10.1186/s13287-024-04126-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoietic stem cell transplantation (HSCT) is a promising approach in regenerative medicine and serves as a standard treatment for different malignant and non-malignant conditions. Despite its widespread applications, HSCT is associated with various complications that compromise patients' lives and pose considerable risks of morbidity and mortality. Understanding the molecular physiology of HSCs is fundamental to ultimately enhance the mobilization, engraftment and differentiation of HSCs, thus unleashing the full therapeutic potential of HSCT in the treated patients. This review outlines the current understanding of HSC biology and its relevance to the clinical challenges associated with HSCT. Furthermore, we critically discuss the pros and cons of the preclinical murine models exploited in the HSCT field. Understanding the molecular physiology of HSCs will ultimately unleash the full therapeutic potential of HSCT. HSCs derived from induced pluripotent stem cells (iPSCs) might present an attractive tool which could be exploited preclinically and clinically. Nonetheless, further studies are warranted to systematically evaluate their potential in terms of improving the therapeutic outcome and minimizing the adverse effects of HSCT.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"60"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04126-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Hematopoietic stem cell transplantation (HSCT) is a promising approach in regenerative medicine and serves as a standard treatment for different malignant and non-malignant conditions. Despite its widespread applications, HSCT is associated with various complications that compromise patients' lives and pose considerable risks of morbidity and mortality. Understanding the molecular physiology of HSCs is fundamental to ultimately enhance the mobilization, engraftment and differentiation of HSCs, thus unleashing the full therapeutic potential of HSCT in the treated patients. This review outlines the current understanding of HSC biology and its relevance to the clinical challenges associated with HSCT. Furthermore, we critically discuss the pros and cons of the preclinical murine models exploited in the HSCT field. Understanding the molecular physiology of HSCs will ultimately unleash the full therapeutic potential of HSCT. HSCs derived from induced pluripotent stem cells (iPSCs) might present an attractive tool which could be exploited preclinically and clinically. Nonetheless, further studies are warranted to systematically evaluate their potential in terms of improving the therapeutic outcome and minimizing the adverse effects of HSCT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Adipose stromal cells increase insulin sensitivity and decrease liver gluconeogenesis in a mouse model of type 1 diabetes mellitus. Enhanced mitochondrial function and delivery from adipose-derived stem cell spheres via the EZH2-H3K27me3-PPARγ pathway for advanced therapy. Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson's disease mice. Hormone correction of dysfunctional metabolic gene expression in stem cell-derived liver tissue. Modeling of lung organoid-based fibrosis for testing the sensitivity of anti-fibrotic drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1