Desmoplastic reaction in the microenvironment of head and neck and other solid tumors: the therapeutic barrier.

IF 4.3 2区 医学 Q2 ONCOLOGY Therapeutic Advances in Medical Oncology Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.1177/17588359251317144
Kohei Okuyama, Maiko Tsuchiya, Kala Chand Debnath, Shajedul Islam, Souichi Yanamoto
{"title":"Desmoplastic reaction in the microenvironment of head and neck and other solid tumors: the therapeutic barrier.","authors":"Kohei Okuyama, Maiko Tsuchiya, Kala Chand Debnath, Shajedul Islam, Souichi Yanamoto","doi":"10.1177/17588359251317144","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) remains a challenge due to limited prognostic biomarkers and therapeutic options. The tumor microenvironment (TME), particularly the desmoplastic reaction (DR) characterized by stromal fibrosis, plays a crucial role in cancer progression and resistance to therapy. This review aims to summarize the biological significance of DR in HNSCC initiation, progression, and treatment resistance. Histologically, DR in HNSCC correlates with invasion patterns and clinical outcomes, affecting disease-free and overall survival. The interaction between cancer-associated fibroblasts (CAFs) and TME influences immune responses, including resistance to immunotherapy. Notably, human papillomavirus-driven HNSCC exhibits distinct DR characteristics that further influence the prognosis. DR promotes epithelial-mesenchymal transition and cancer cell invasion through CAF-mediated extracellular matrix remodeling and signaling pathways such as transforming growth factor-beta. DR also affects bone invasion and chemotherapy resistance by modulating stromal responses. Therapeutic strategies targeting DR and stromal components show promise in overcoming therapeutic resistance including resistance to immune checkpoint inhibitors. Understanding the role of DR in HNSCC biology and its impact on treatment response is critical to developing effective therapeutic interventions.</p>","PeriodicalId":23053,"journal":{"name":"Therapeutic Advances in Medical Oncology","volume":"17 ","pages":"17588359251317144"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17588359251317144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Head and neck squamous cell carcinoma (HNSCC) remains a challenge due to limited prognostic biomarkers and therapeutic options. The tumor microenvironment (TME), particularly the desmoplastic reaction (DR) characterized by stromal fibrosis, plays a crucial role in cancer progression and resistance to therapy. This review aims to summarize the biological significance of DR in HNSCC initiation, progression, and treatment resistance. Histologically, DR in HNSCC correlates with invasion patterns and clinical outcomes, affecting disease-free and overall survival. The interaction between cancer-associated fibroblasts (CAFs) and TME influences immune responses, including resistance to immunotherapy. Notably, human papillomavirus-driven HNSCC exhibits distinct DR characteristics that further influence the prognosis. DR promotes epithelial-mesenchymal transition and cancer cell invasion through CAF-mediated extracellular matrix remodeling and signaling pathways such as transforming growth factor-beta. DR also affects bone invasion and chemotherapy resistance by modulating stromal responses. Therapeutic strategies targeting DR and stromal components show promise in overcoming therapeutic resistance including resistance to immune checkpoint inhibitors. Understanding the role of DR in HNSCC biology and its impact on treatment response is critical to developing effective therapeutic interventions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
2.00%
发文量
160
审稿时长
15 weeks
期刊介绍: Therapeutic Advances in Medical Oncology is an open access, peer-reviewed journal delivering the highest quality articles, reviews, and scholarly comment on pioneering efforts and innovative studies in the medical treatment of cancer. The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in medical oncology, providing a forum in print and online for publishing the highest quality articles in this area. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Comparison of inflammatory markers before and after nanoliposomal irinotecan and fluorouracil with folic acid in patients with pancreatic cancer: results from the NAPOLEON-2 study (NN-2302). End-of-life care for patients with pancreatic cancer in France: a nationwide population-based cohort study. Different activity and toxicity of immunotherapy in monozygotic twins diagnosed with early triple-negative breast cancer: a case report. Efficacy of goserelin in ovarian function suppression and preservation for pre- and perimenopausal breast cancer patients: a systematic review. Outcomes of patients with refractory upper GI cancers enrolled in phase I trials: a 10-year analysis from the Sarah Cannon Research Institute UK Drug Development Unit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1