Sabine Szunerits, Rabah Boukherroub, Christoph Kleber, Wolfgang Knoll, Jhonny Yunda, José Rumipamba, Guido Torres, Sorin Melinte
{"title":"Biosensors integrated within wearable devices for monitoring chronic wound status.","authors":"Sabine Szunerits, Rabah Boukherroub, Christoph Kleber, Wolfgang Knoll, Jhonny Yunda, José Rumipamba, Guido Torres, Sorin Melinte","doi":"10.1063/5.0220516","DOIUrl":null,"url":null,"abstract":"<p><p>Slowly healing wounds significantly affect the life quality of patients in different ways, due to constant pain, unpleasant odor, reduced mobility up to social isolation, and personal frustration. While remote wound management has become more widely accepted since the COVID-19 pandemic, delayed treatment remains frequent and results in several wound healing related complications. As inappropriate management of notably diabetic foot ulcers is linked to a high risk of amputation, effective management of wounds in a patient-centered manner remains important to be implemented. The integration of diagnostic devices into wound bandages is under way, owing to advancements in materials science and nanofabrication strategies as well as innovation in communication technologies together with machine learning and data-driven assessment tools. Leveraging advanced analytical approaches around local pH, temperature, pressure, and wound biomarker sensing is expected to facilitate adequate wound treatment. The state-of-the-art of time-resolved monitoring of the wound status by quantifying key physiological parameters as well as wound biomarkers' concentration is presented herewith. A special focus will be given to smart bandages with on-demand delivery capabilities for improved wound management.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"9 1","pages":"010901"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0220516","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Slowly healing wounds significantly affect the life quality of patients in different ways, due to constant pain, unpleasant odor, reduced mobility up to social isolation, and personal frustration. While remote wound management has become more widely accepted since the COVID-19 pandemic, delayed treatment remains frequent and results in several wound healing related complications. As inappropriate management of notably diabetic foot ulcers is linked to a high risk of amputation, effective management of wounds in a patient-centered manner remains important to be implemented. The integration of diagnostic devices into wound bandages is under way, owing to advancements in materials science and nanofabrication strategies as well as innovation in communication technologies together with machine learning and data-driven assessment tools. Leveraging advanced analytical approaches around local pH, temperature, pressure, and wound biomarker sensing is expected to facilitate adequate wound treatment. The state-of-the-art of time-resolved monitoring of the wound status by quantifying key physiological parameters as well as wound biomarkers' concentration is presented herewith. A special focus will be given to smart bandages with on-demand delivery capabilities for improved wound management.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology