Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T.

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Physics Pub Date : 2024-10-01 Epub Date: 2024-12-18 DOI:10.4103/jmp.jmp_133_24
Antria Filippou, Nikolas Evripidou, Andreas Georgiou, Leonidas Georgiou, Antreas Chrysanthou, Cleanthis Ioannides, Christakis Damianou
{"title":"Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T.","authors":"Antria Filippou, Nikolas Evripidou, Andreas Georgiou, Leonidas Georgiou, Antreas Chrysanthou, Cleanthis Ioannides, Christakis Damianou","doi":"10.4103/jmp.jmp_133_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique.</p><p><strong>Materials and methods: </strong>Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity.</p><p><strong>Results: </strong>Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR.</p><p><strong>Conclusions: </strong>MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"583-596"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_133_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique.

Materials and methods: Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity.

Results: Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR.

Conclusions: MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用临床前聚焦超声机器人系统的聚焦超声磁共振测温。
目的:聚焦超声(FUS)治疗通常在磁共振成像(MRI)系统中进行,提供基于温度测量的温度监测。在此,使用质子共振频移技术,在1.5T和3T MRI扫描仪上使用临床前系统对琼脂基幻影进行FUS超声成像的MRI测温评估。材料和方法:在1.5T和3T下进行超声,以评估系统并观察磁共振(MR)测温温度的变化。在3T下评估MR测温,对三种琼脂基幻影进行相同的超声,掺杂不同浓度的二氧化硅和炼乳,以及在1.5-45 W的不同声功率下进行超声。此外,采用5 ~ 20 ms的回波时间(TE)值来评估对信噪比(SNR)和温度变化灵敏度的影响。结果:尽管采用了类似的测温序列,但与1.5T相比,3T下的超声产生了更清晰的热图,其时间分辨率高2.5倍。在3T时,记录了用不同的二氧化硅和炼乳制作的三种幻影在41°C和50°C之间的温度变化,添加2% w/v的二氧化硅导致温度变化增加20%。在体素内产生可靠光束检测的最低声功率为1.5 W。10ms的TE产生了具有足够信噪比的最高温度灵敏度。结论:在3T下进行的MR测温获得了与超声和成像参数显示的温度相关性的短时间分辨率。目前的数据可用于临床前mri引导下的FUS可行性研究,以增强MR测温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
期刊最新文献
Cross-modality Dosimetry Audit in Head-and-neck Radiotherapy: A Phantom-based Approach for Photon and Proton Beams. Dose Characteristics of a Deep Learning Model for EPID-based In vivo Dosimetry. Dosimetric Comparison of Various Radiotherapy Planning Techniques in Postmastectomy Breast Cancer Patients. Effectiveness of RapidPlan in Combination with Multicriteria Optimization for Cervix Radiotherapy Planning. Optimizing CyberKnife Stereotactic Radiosurgery for Motor-eloquent Brain Arteriovenous Malformations Using Diffusion Tensor Imaging-based Tractography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1