Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T.

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Physics Pub Date : 2024-10-01 Epub Date: 2024-12-18 DOI:10.4103/jmp.jmp_133_24
Antria Filippou, Nikolas Evripidou, Andreas Georgiou, Leonidas Georgiou, Antreas Chrysanthou, Cleanthis Ioannides, Christakis Damianou
{"title":"Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T.","authors":"Antria Filippou, Nikolas Evripidou, Andreas Georgiou, Leonidas Georgiou, Antreas Chrysanthou, Cleanthis Ioannides, Christakis Damianou","doi":"10.4103/jmp.jmp_133_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique.</p><p><strong>Materials and methods: </strong>Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity.</p><p><strong>Results: </strong>Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR.</p><p><strong>Conclusions: </strong>MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"583-596"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_133_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique.

Materials and methods: Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity.

Results: Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR.

Conclusions: MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
期刊最新文献
Investigation of the Effect of Calibration Curves Obtained from Different Computed Tomography Devices on the Dose Distribution of Tomotherapy Plans. Machine Learning Approach and Model for Predicting Proton Stopping Power Ratio and Other Parameters Using Computed Tomography Images. Monte Carlo Simulation of Gamma and Neutron Shielding with High-performance Ultra-heavy Cement Composite. Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T. Multifaceted Characterization and Therapeutic Evaluation of Co-precipitated Cobalt Ferrite Nanoparticles for Magnetic Hyperthermia Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1