Study of Molecular Interactions, Optical, and Structural Properties through the Green Synthesis of Selenium Oxide Nanoparticles from Hibiscus sabdarriffal: Biocompatibility for Biophysics.
{"title":"Study of Molecular Interactions, Optical, and Structural Properties through the Green Synthesis of Selenium Oxide Nanoparticles from <i>Hibiscus sabdarriffal</i>: Biocompatibility for Biophysics.","authors":"Ali Bahari, Saad I Esmail, Ashraf M Alattar","doi":"10.4103/jmp.jmp_144_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, the green synthesis process has been utilized to manufacture a large quantity of metal nanocrystallites due to its low cost and the availability of numerous natural resources and the find the activity of bacteria and viruses that in the body of humans.</p><p><strong>Aims and objectives: </strong>In this study, nanocrystallites of selenium oxide were produced utilizing <i>Hibiscus sabdariffa</i>. Researchers have analyzed the antibacterial properties and nanostructure characteristics of selenium oxide nanocrystallites using various techniques methods, such as imaging microscopy, scanning electron microscopy, ultraviolet‒visible spectroscopy (UV‒VIS), transmission electron microscopy, atomic force microscopy, and X-ray diffraction (XRD) spectroscopy.</p><p><strong>Results: </strong>According to the results, the films are discovered to have a nanocrystalline structure in a cubic spinel configuration. The crystallites are semispherical in shape and are both uniform and easily distributed. The XRD data were recorded on card number 22-1314, and the 2 θ (hkl) value was 38.351 (311). The UV‒VIS spectrum of the material exhibited a plasmon resonance peak at 272 nm, confirming the presence here of selenium oxide. This study also investigated the response of four distinct strains of pathogenic bacteria to biosynthesized selenium oxide nanoparticles (NPs). The data indicate that the biosynthesized selenium oxide NPs were highly effective against <i>Klebsiella</i> spp. and had the lowest effectiveness against <i>Staphylococcus</i> <i>aureus</i>, <i>Staphylococcus epidermidis</i>, and <i>Escherichia coli</i>.</p><p><strong>Conclusions: </strong>The utilization of selenium oxide nanocrystals as antibacterial agents has yielded diverse outcomes, demonstrating their remarkable efficacy in combatting <i>Klebsiella</i> spp.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"557-562"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_144_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recently, the green synthesis process has been utilized to manufacture a large quantity of metal nanocrystallites due to its low cost and the availability of numerous natural resources and the find the activity of bacteria and viruses that in the body of humans.
Aims and objectives: In this study, nanocrystallites of selenium oxide were produced utilizing Hibiscus sabdariffa. Researchers have analyzed the antibacterial properties and nanostructure characteristics of selenium oxide nanocrystallites using various techniques methods, such as imaging microscopy, scanning electron microscopy, ultraviolet‒visible spectroscopy (UV‒VIS), transmission electron microscopy, atomic force microscopy, and X-ray diffraction (XRD) spectroscopy.
Results: According to the results, the films are discovered to have a nanocrystalline structure in a cubic spinel configuration. The crystallites are semispherical in shape and are both uniform and easily distributed. The XRD data were recorded on card number 22-1314, and the 2 θ (hkl) value was 38.351 (311). The UV‒VIS spectrum of the material exhibited a plasmon resonance peak at 272 nm, confirming the presence here of selenium oxide. This study also investigated the response of four distinct strains of pathogenic bacteria to biosynthesized selenium oxide nanoparticles (NPs). The data indicate that the biosynthesized selenium oxide NPs were highly effective against Klebsiella spp. and had the lowest effectiveness against Staphylococcusaureus, Staphylococcus epidermidis, and Escherichia coli.
Conclusions: The utilization of selenium oxide nanocrystals as antibacterial agents has yielded diverse outcomes, demonstrating their remarkable efficacy in combatting Klebsiella spp.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.