Lijun Shi, Chenguang Yang, Lu Ma, Ying Lu, Xin Bian
{"title":"Single-Molecule FRET Imaging for Observing the Conformational Dynamics of Dynamin-Like GTPase Atlastin.","authors":"Lijun Shi, Chenguang Yang, Lu Ma, Ying Lu, Xin Bian","doi":"10.3791/67263","DOIUrl":null,"url":null,"abstract":"<p><p>The rigid-body rotation of the three-helical middle domain (3HB) relative to the GTPase domain of dynamin-like protein atlastin (ATL) is a crucial driver of homotypic membrane fusion within the endoplasmic reticulum (ER). Disruptions in this process have been associated with hereditary spastic paraplegia (HSP), a neurodegenerative disorder. Structural and biochemical studies suggest that the conformational changes in ATL are linked to GTP hydrolysis, but real-time visualization of these conformational dynamics during the GTP hydrolysis cycle remains challenging. To better understand the mechanical mechanisms behind ATL function, single-molecule Förster resonance energy transfer (smFRET) was utilized. Three specific strategies were employed to immobilize the N-terminal cytosolic region of human ATL1 (ATL1cyto) in a streptavidin-coated microfluidic chamber, facilitating the application of intramolecular and intermolecular smFRET imaging. This allowed precise monitoring of protein conformations in various nucleotide-loading states, providing direct insights into individual molecular behaviors. This method can be applied to study other mechanochemical proteins as well.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67263","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The rigid-body rotation of the three-helical middle domain (3HB) relative to the GTPase domain of dynamin-like protein atlastin (ATL) is a crucial driver of homotypic membrane fusion within the endoplasmic reticulum (ER). Disruptions in this process have been associated with hereditary spastic paraplegia (HSP), a neurodegenerative disorder. Structural and biochemical studies suggest that the conformational changes in ATL are linked to GTP hydrolysis, but real-time visualization of these conformational dynamics during the GTP hydrolysis cycle remains challenging. To better understand the mechanical mechanisms behind ATL function, single-molecule Förster resonance energy transfer (smFRET) was utilized. Three specific strategies were employed to immobilize the N-terminal cytosolic region of human ATL1 (ATL1cyto) in a streptavidin-coated microfluidic chamber, facilitating the application of intramolecular and intermolecular smFRET imaging. This allowed precise monitoring of protein conformations in various nucleotide-loading states, providing direct insights into individual molecular behaviors. This method can be applied to study other mechanochemical proteins as well.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.