Synthesis of Stimuli-responsive Nanogels using Aqueous One-step Crosslinking and Co-nanopolymerization.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2025-01-24 DOI:10.3791/63981
Rupali Dabas, Luka Blagojevic, Nazila Kamaly
{"title":"Synthesis of Stimuli-responsive Nanogels using Aqueous One-step Crosslinking and Co-nanopolymerization.","authors":"Rupali Dabas, Luka Blagojevic, Nazila Kamaly","doi":"10.3791/63981","DOIUrl":null,"url":null,"abstract":"<p><p>Nanogels consisting of crosslinked-polymeric nanoparticles have been developed for the delivery of numerous chemical and biological therapeutics, owing to their versatile bottom-up synthesis and biocompatibility. While various methods have been employed for nanogel synthesis to date, very few have achieved it without the use of harsh organic solvents or high temperatures that can damage the integrity of the biological payload. In contrast, the methodology presented here accomplishes the synthesis of sub-100 nm sized, protein-loaded nanogels using mild reaction conditions. Here, we present a method for the non-covalent encapsulation of protein-based payloads within nano-gels that were synthesized using an aqueous-based, single-step, crosslinking copolymerization technique. In this technique, we initially electrostatically bind a protein-based payload to a cationic quaternary ammonium monomer and simultaneously cross-link and co-polymerize it using ammonium persulfate and N,N,N',N'-tetramethylethylenediamine to form nanogels that entrap the protein payload. The size and polydispersity index of the nanogels is determined using dynamic light scattering (DLS), while the surface morphology is assessed by transmission electron microscopy (TEM). The mass of protein entrapped within nanogels is determined by calculating the encapsulation efficiency. Furthermore, the controlled-release ability of the nanogels via the gradual degradation of redox-responsive structural elements is also assessed in bioreduction assays. We provide examples of nanoparticle optimization data to demonstrate all caveats of nanogel synthesis and characterization using this technique. In general, uniformly sized nanogels were obtained with an average size of 57 nm and a polydispersity index value of 0.093. A high encapsulation efficiency of 76% was achieved. Furthermore, the nanogels exhibited controlled release of up to 86% of the encapsulated protein by gradual degradation of novel redox-responsive components in the presence of glutathione over 48 h.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/63981","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nanogels consisting of crosslinked-polymeric nanoparticles have been developed for the delivery of numerous chemical and biological therapeutics, owing to their versatile bottom-up synthesis and biocompatibility. While various methods have been employed for nanogel synthesis to date, very few have achieved it without the use of harsh organic solvents or high temperatures that can damage the integrity of the biological payload. In contrast, the methodology presented here accomplishes the synthesis of sub-100 nm sized, protein-loaded nanogels using mild reaction conditions. Here, we present a method for the non-covalent encapsulation of protein-based payloads within nano-gels that were synthesized using an aqueous-based, single-step, crosslinking copolymerization technique. In this technique, we initially electrostatically bind a protein-based payload to a cationic quaternary ammonium monomer and simultaneously cross-link and co-polymerize it using ammonium persulfate and N,N,N',N'-tetramethylethylenediamine to form nanogels that entrap the protein payload. The size and polydispersity index of the nanogels is determined using dynamic light scattering (DLS), while the surface morphology is assessed by transmission electron microscopy (TEM). The mass of protein entrapped within nanogels is determined by calculating the encapsulation efficiency. Furthermore, the controlled-release ability of the nanogels via the gradual degradation of redox-responsive structural elements is also assessed in bioreduction assays. We provide examples of nanoparticle optimization data to demonstrate all caveats of nanogel synthesis and characterization using this technique. In general, uniformly sized nanogels were obtained with an average size of 57 nm and a polydispersity index value of 0.093. A high encapsulation efficiency of 76% was achieved. Furthermore, the nanogels exhibited controlled release of up to 86% of the encapsulated protein by gradual degradation of novel redox-responsive components in the presence of glutathione over 48 h.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
Erratum: Bulk Electroacupuncture Operation for Mice or Young Rats. Erratum: Periorbital Placement of a Laser Doppler Probe for Cerebral Blood Flow Monitoring Prior to Middle Cerebral Artery Occlusion in Rodent Models. 2.5D Model for Ex Vivo Mechanical Characterization of Sprouting Angiogenesis in Living Tissue. Characterizing Extracellular Vesicles from Biological Fluids. Fluorescence Assays for the Study of Mycobacterium tuberculosis Interaction with the Immune Receptor SLAMF1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1