Design and Performance Evaluation of SiPM-based High-resolution Dedicated Brain Positron Emission Tomography Scanner: A Simulation Study.

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Physics Pub Date : 2024-10-01 Epub Date: 2024-12-18 DOI:10.4103/jmp.jmp_134_24
Tahereh Zare, Peyman Sheikhzadeh, Behnoosh Teimourian Fard, Pardis Ghafarian, Mohammad Reza Ay
{"title":"Design and Performance Evaluation of SiPM-based High-resolution Dedicated Brain Positron Emission Tomography Scanner: A Simulation Study.","authors":"Tahereh Zare, Peyman Sheikhzadeh, Behnoosh Teimourian Fard, Pardis Ghafarian, Mohammad Reza Ay","doi":"10.4103/jmp.jmp_134_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose/aim: </strong>The increasing population age highlights the critical need for early brain disease diagnosis, especially in disorders such as dementia. Consequently, a notable focus has been on developing dedicated brain positron emission tomography (PET) scanners, which offer higher resolution and sensitivity than whole-body PET scanners. This study aims to design and performance evaluation of an LYSO-based dedicated brain PET scanner.</p><p><strong>Materials and methods: </strong>We developed a dedicated brain PET using Monte Carlo simulation based on cylindrical geometry. Each detector block consisted of a 23 × 23 array of 2 mm × 2 mm × 15 mm LYSO crystals coupled with SiPM. The performance of this scanner was evaluated based on the NEMA NU-2-2018 standard, focusing on analyzing various energy windows and coincidence time windows (CTWs).</p><p><strong>Results: </strong>The results demonstrated that the noise equivalent count rate (NECR) peaked at each CTW in the 408-680 keV energy window. In addition, increasing the CTWs from 3 ns to 10 ns resulted in a decrease of 9% in sensitivity and an increase of 63% in NECR. Furthermore, the study findings highlight that using a time-of-flight (TOF) resolution of 250 ps can substantially improve image contrast relative to non-TOF reconstruction.</p><p><strong>Conclusions: </strong>We conclude that employing a broader energy window and a narrower CTW can significantly enhance the scanner's performance regarding sensitivity and NECR. Furthermore, incorporating LYSO pixelated crystals with TOF information will facilitate the generation of high-resolution and high-contrast images.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"631-641"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_134_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose/aim: The increasing population age highlights the critical need for early brain disease diagnosis, especially in disorders such as dementia. Consequently, a notable focus has been on developing dedicated brain positron emission tomography (PET) scanners, which offer higher resolution and sensitivity than whole-body PET scanners. This study aims to design and performance evaluation of an LYSO-based dedicated brain PET scanner.

Materials and methods: We developed a dedicated brain PET using Monte Carlo simulation based on cylindrical geometry. Each detector block consisted of a 23 × 23 array of 2 mm × 2 mm × 15 mm LYSO crystals coupled with SiPM. The performance of this scanner was evaluated based on the NEMA NU-2-2018 standard, focusing on analyzing various energy windows and coincidence time windows (CTWs).

Results: The results demonstrated that the noise equivalent count rate (NECR) peaked at each CTW in the 408-680 keV energy window. In addition, increasing the CTWs from 3 ns to 10 ns resulted in a decrease of 9% in sensitivity and an increase of 63% in NECR. Furthermore, the study findings highlight that using a time-of-flight (TOF) resolution of 250 ps can substantially improve image contrast relative to non-TOF reconstruction.

Conclusions: We conclude that employing a broader energy window and a narrower CTW can significantly enhance the scanner's performance regarding sensitivity and NECR. Furthermore, incorporating LYSO pixelated crystals with TOF information will facilitate the generation of high-resolution and high-contrast images.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于sipm的高分辨率专用脑正电子发射断层扫描仪的设计与性能评估:仿真研究。
目的/目的:人口年龄的增长突出了早期脑部疾病诊断的迫切需要,特别是在痴呆症等疾病中。因此,一个值得注意的焦点一直是开发专用的脑正电子发射断层扫描(PET)扫描仪,它提供比全身PET扫描仪更高的分辨率和灵敏度。本研究旨在设计一种基于lyso的专用脑PET扫描仪并进行性能评估。材料与方法:我们利用蒙特卡罗模拟技术开发了一种基于圆柱形几何的专用脑PET。每个探测器块由一个23 × 23的2 mm × 2 mm × 15 mm LYSO晶体阵列与SiPM耦合组成。根据NEMA NU-2-2018标准对该扫描仪的性能进行了评估,重点分析了各种能量窗和符合时间窗(ctw)。结果表明:噪声等效计数率(NECR)在408 ~ 680 keV能量窗各CTW处达到峰值;此外,将ctw从3 ns增加到10 ns,导致灵敏度下降9%,NECR增加63%。此外,研究结果强调,与非TOF重建相比,使用250 ps的飞行时间(TOF)分辨率可以显著提高图像对比度。结论:采用更宽的能量窗和更窄的CTW可以显著提高扫描仪在灵敏度和NECR方面的性能。此外,将LYSO像素化晶体与TOF信息相结合将有助于生成高分辨率和高对比度的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
期刊最新文献
Cross-modality Dosimetry Audit in Head-and-neck Radiotherapy: A Phantom-based Approach for Photon and Proton Beams. Dose Characteristics of a Deep Learning Model for EPID-based In vivo Dosimetry. Dosimetric Comparison of Various Radiotherapy Planning Techniques in Postmastectomy Breast Cancer Patients. Effectiveness of RapidPlan in Combination with Multicriteria Optimization for Cervix Radiotherapy Planning. Optimizing CyberKnife Stereotactic Radiosurgery for Motor-eloquent Brain Arteriovenous Malformations Using Diffusion Tensor Imaging-based Tractography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1