Artificial Intelligence Applications in Ophthalmology.

IF 1.5 Q2 MEDICINE, GENERAL & INTERNAL JMA journal Pub Date : 2025-01-15 Epub Date: 2024-09-13 DOI:10.31662/jmaj.2024-0139
Tetsuro Oshika
{"title":"Artificial Intelligence Applications in Ophthalmology.","authors":"Tetsuro Oshika","doi":"10.31662/jmaj.2024-0139","DOIUrl":null,"url":null,"abstract":"<p><p>Ophthalmology is well suited for the integration of artificial intelligence (AI) owing to its reliance on various imaging modalities, such as anterior segment photography, fundus photography, and optical coherence tomography (OCT), which generate large volumes of high-resolution digital images. These images provide rich datasets for training AI algorithms, which enables precise diagnosis and monitoring of various ocular conditions. Retinal disease management heavily relies on image recognition. Limited access to ophthalmologists in underdeveloped areas and high image volumes in developed countries make AI a promising, cost-effective solution for screening and diagnosis. In corneal diseases, differential diagnosis is critical yet challenging because of the wide range of potential etiologies. AI and diagnostic technologies offer promise for improving the accuracy and speed of these diagnoses, including the differentiation between infectious and noninfectious conditions. Smartphone imaging coupled with AI technology can advance the diagnosis of anterior segment diseases, democratizing access to eye care and providing rapid and reliable diagnostic results. Other potential areas for AI applications include cataract and vitreous surgeries as well as the use of generative AI in training ophthalmologists. While AI offers substantial benefits, challenges remain, including the need for high-quality images, accurate manual annotations, patient heterogeneity considerations, and the \"black-box phenomenon\". Addressing these issues is crucial for enhancing the effectiveness of AI and ensuring its successful integration into clinical practice. AI is poised to transform ophthalmology by increasing diagnostic accuracy, optimizing treatment strategies, and improving patient care, particularly in high-risk or underserved populations.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"66-75"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ophthalmology is well suited for the integration of artificial intelligence (AI) owing to its reliance on various imaging modalities, such as anterior segment photography, fundus photography, and optical coherence tomography (OCT), which generate large volumes of high-resolution digital images. These images provide rich datasets for training AI algorithms, which enables precise diagnosis and monitoring of various ocular conditions. Retinal disease management heavily relies on image recognition. Limited access to ophthalmologists in underdeveloped areas and high image volumes in developed countries make AI a promising, cost-effective solution for screening and diagnosis. In corneal diseases, differential diagnosis is critical yet challenging because of the wide range of potential etiologies. AI and diagnostic technologies offer promise for improving the accuracy and speed of these diagnoses, including the differentiation between infectious and noninfectious conditions. Smartphone imaging coupled with AI technology can advance the diagnosis of anterior segment diseases, democratizing access to eye care and providing rapid and reliable diagnostic results. Other potential areas for AI applications include cataract and vitreous surgeries as well as the use of generative AI in training ophthalmologists. While AI offers substantial benefits, challenges remain, including the need for high-quality images, accurate manual annotations, patient heterogeneity considerations, and the "black-box phenomenon". Addressing these issues is crucial for enhancing the effectiveness of AI and ensuring its successful integration into clinical practice. AI is poised to transform ophthalmology by increasing diagnostic accuracy, optimizing treatment strategies, and improving patient care, particularly in high-risk or underserved populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Prevalence of Nephrocalcinosis in Hypophosphatasia Patients with the ALPL c.1559del Gene Variant. Hospital-based Introduction of Untested High-risk Foods for Down Syndrome Infant with Severe Food Protein-induced Enterocolitis Syndrome: A Case Report. How Healthy Lifestyle Habits Have Interacted with SARS-CoV-2 Infection and the Effectiveness of COVID-19 Vaccinations: A Comment. How Will Work Hour Restrictions Transform the Working Conditions of Resident Physicians? Hypotensive Dumping Syndrome in Hypertrophic Obstructive Cardiomyopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1