Clinical Prospects for Artificial Intelligence in Obstetrics and Gynecology.

IF 1.5 Q2 MEDICINE, GENERAL & INTERNAL JMA journal Pub Date : 2025-01-15 Epub Date: 2024-12-13 DOI:10.31662/jmaj.2024-0197
Kenbun Sone, Ayumi Taguchi, Yuichiro Miyamoto, Mayuyo Uchino-Mori, Takayuki Iriyama, Yasushi Hirota, Yutaka Osuga
{"title":"Clinical Prospects for Artificial Intelligence in Obstetrics and Gynecology.","authors":"Kenbun Sone, Ayumi Taguchi, Yuichiro Miyamoto, Mayuyo Uchino-Mori, Takayuki Iriyama, Yasushi Hirota, Yutaka Osuga","doi":"10.31662/jmaj.2024-0197","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, artificial intelligence (AI) research in the medical field has been actively conducted owing to the evolution of algorithms, such as deep learning, and advances in hardware, such as graphics processing units, and some such medical devices have been used in clinics. AI research in obstetrics and gynecology has also increased. This review discusses the latest studies in each field. In the perinatal field, there are reports on cardiotocography, studies on the diagnosis of fetal abnormalities using ultrasound scans, and studies on placenta previa using magnetic resonance imaging (MRI). In the reproduction field, numerous studies have been conducted on the efficiency of assisted reproductive technology as well as selection of suitable oocyte and good embryos. As regards gynecologic cancers, there are many reports on diagnosis using MRI and prognosis prediction using histopathology in cervical cancer, diagnosis using hysteroscopy and prediction of molecular subtypes based on histopathology in endometrial cancer, and diagnosis using MRI and ultrasound as well as prediction of anticancer drug efficacy in ovarian cancer. However, concerns related to AI research include handling of personal information, lack of governing laws, and transparency. These must be addressed to facilitate advanced AI research.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"113-120"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, artificial intelligence (AI) research in the medical field has been actively conducted owing to the evolution of algorithms, such as deep learning, and advances in hardware, such as graphics processing units, and some such medical devices have been used in clinics. AI research in obstetrics and gynecology has also increased. This review discusses the latest studies in each field. In the perinatal field, there are reports on cardiotocography, studies on the diagnosis of fetal abnormalities using ultrasound scans, and studies on placenta previa using magnetic resonance imaging (MRI). In the reproduction field, numerous studies have been conducted on the efficiency of assisted reproductive technology as well as selection of suitable oocyte and good embryos. As regards gynecologic cancers, there are many reports on diagnosis using MRI and prognosis prediction using histopathology in cervical cancer, diagnosis using hysteroscopy and prediction of molecular subtypes based on histopathology in endometrial cancer, and diagnosis using MRI and ultrasound as well as prediction of anticancer drug efficacy in ovarian cancer. However, concerns related to AI research include handling of personal information, lack of governing laws, and transparency. These must be addressed to facilitate advanced AI research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Prevalence of Nephrocalcinosis in Hypophosphatasia Patients with the ALPL c.1559del Gene Variant. Hospital-based Introduction of Untested High-risk Foods for Down Syndrome Infant with Severe Food Protein-induced Enterocolitis Syndrome: A Case Report. How Healthy Lifestyle Habits Have Interacted with SARS-CoV-2 Infection and the Effectiveness of COVID-19 Vaccinations: A Comment. How Will Work Hour Restrictions Transform the Working Conditions of Resident Physicians? Hypotensive Dumping Syndrome in Hypertrophic Obstructive Cardiomyopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1