Biofilm and Antibiotic Resistance Study of Bacteria Involved in Nosocomial Infections.

IF 1 Q3 MEDICINE, GENERAL & INTERNAL Cureus Pub Date : 2025-02-07 eCollection Date: 2025-02-01 DOI:10.7759/cureus.78673
Nihal Ezzariga, Oumaima Zouhari, Amal Rhars, Zohra Lemkhente, Mohamed Aghrouch
{"title":"Biofilm and Antibiotic Resistance Study of Bacteria Involved in Nosocomial Infections.","authors":"Nihal Ezzariga, Oumaima Zouhari, Amal Rhars, Zohra Lemkhente, Mohamed Aghrouch","doi":"10.7759/cureus.78673","DOIUrl":null,"url":null,"abstract":"<p><p>Nosocomial infections are increasingly problematic due to growing bacterial resistance. Biofilms play a key role in the persistence of these infections, leading to treatment failures and poor patient outcomes. Addressing antibiotic resistance within biofilms is especially critical in hospitals, making it essential to develop new strategies to manage biofilm-related infections and curb bacterial resistance. The study, conducted at the regional hospital center in Agadir, Morocco, analyzed 75 bacteria (37 antibiotic-sensitive and 38 resistant). Seven bacteria were isolated from catheters, and others from preserved samples. Biofilm formation was assessed using the tissue culture plate (TCP) method, involving strain recovery; culture on cystine, lactose, electrolyte-deficient (CLED) medium; microplate inoculation; staining with crystal violet; and optical density (OD) measurement. The results showed that 77.33% of the bacteria formed biofilms. All catheter-isolated bacteria showed biofilm formation. Strong biofilm production was observed in 66.67% of <i>Acinetobacter baumannii</i> and in most <i>Pseudomonas aeruginosa</i> strains. <i>Enterobacteriaceae</i> also demonstrated significant biofilm formation. Notably, 70% of carbapenem-resistant bacteria showed strong biofilm production. Most nosocomial bacteria form biofilms, with a higher prevalence in antibiotic-resistant strains. Sensitive bacteria also form biofilms but less frequently. Bacterial conjugation may facilitate the acquisition of carbapenem resistance within biofilms.</p>","PeriodicalId":93960,"journal":{"name":"Cureus","volume":"17 2","pages":"e78673"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cureus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7759/cureus.78673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nosocomial infections are increasingly problematic due to growing bacterial resistance. Biofilms play a key role in the persistence of these infections, leading to treatment failures and poor patient outcomes. Addressing antibiotic resistance within biofilms is especially critical in hospitals, making it essential to develop new strategies to manage biofilm-related infections and curb bacterial resistance. The study, conducted at the regional hospital center in Agadir, Morocco, analyzed 75 bacteria (37 antibiotic-sensitive and 38 resistant). Seven bacteria were isolated from catheters, and others from preserved samples. Biofilm formation was assessed using the tissue culture plate (TCP) method, involving strain recovery; culture on cystine, lactose, electrolyte-deficient (CLED) medium; microplate inoculation; staining with crystal violet; and optical density (OD) measurement. The results showed that 77.33% of the bacteria formed biofilms. All catheter-isolated bacteria showed biofilm formation. Strong biofilm production was observed in 66.67% of Acinetobacter baumannii and in most Pseudomonas aeruginosa strains. Enterobacteriaceae also demonstrated significant biofilm formation. Notably, 70% of carbapenem-resistant bacteria showed strong biofilm production. Most nosocomial bacteria form biofilms, with a higher prevalence in antibiotic-resistant strains. Sensitive bacteria also form biofilms but less frequently. Bacterial conjugation may facilitate the acquisition of carbapenem resistance within biofilms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is Surgery for Congenital Heart Defects in Neonates, Infants, and Children More Challenging and Demanding Than Surgery for Acquired Heart Defects in Adults? Healthcare at Risk: Why Do Sudan's Healthcare Workers Face Gaps in Hepatitis B Virus Protection? The Role of KI67 in Predicting Post-ESS (Endoscopic Sinus Surgery) Outcomes in CRSwNP (Chronic Rhinosinusitis With Nasal Polyps). Prevalence of Accommodative Insufficiency in Children With Normal Accommodative-Convergence/Accommodation Ratio and Its Association With Refractive Error: A Cross-Sectional Study. Hilar and Extrahepatic Inflammatory Pseudotumour: A Case Report and Systematic Literature Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1