He-He Cao, Ning Ban, Zhi-Fu Liu, Zhe Li, Jia-Fei Tian, Zhaozhi Lu, Jian-Wen Qiao, Tong-Xian Liu
{"title":"The sweet taste inhibitor lactisole affects aphid feeding behavior and performance.","authors":"He-He Cao, Ning Ban, Zhi-Fu Liu, Zhe Li, Jia-Fei Tian, Zhaozhi Lu, Jian-Wen Qiao, Tong-Xian Liu","doi":"10.1093/jee/toaf027","DOIUrl":null,"url":null,"abstract":"<p><p>Aphids and numerous other phloem-feeding insects primarily rely on sucrose in the phloem to locate their feeding sites. However, it is still unclear whether this sweet perception process could serve as a target for aphid control. In this study, we investigated the impact of the sweet taste inhibitor sodium salt of 2-(4-methoxyphenoxy)-propionic acid (lactisole), a widely used food additive that binds to sugar receptors, on the feeding behavior and performance of aphids. Our findings indicate that both the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and the English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) avoided settling on an artificial diet containing lactisole or on host plants treated with lactisole. In addition, these aphid species showed reduced weights when feeding on the artificial diet containing lactisole or on seedlings root drenched by lactisole. Furthermore, data from the electrical penetration graph revealed that S. avenae exhibited a greater number of phloem probes but significantly shorter mean and total phloem ingestion durations when feeding on wheat plants root-drenched by lactisole. It is worth noting, however, that root drenched by lactisole had a significant inhibitory effect on plant growth. These findings suggest that the sweet taste inhibitor lactisole may reduce aphid feeding preference and growth, offering a new avenue for aphid control strategies.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aphids and numerous other phloem-feeding insects primarily rely on sucrose in the phloem to locate their feeding sites. However, it is still unclear whether this sweet perception process could serve as a target for aphid control. In this study, we investigated the impact of the sweet taste inhibitor sodium salt of 2-(4-methoxyphenoxy)-propionic acid (lactisole), a widely used food additive that binds to sugar receptors, on the feeding behavior and performance of aphids. Our findings indicate that both the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and the English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) avoided settling on an artificial diet containing lactisole or on host plants treated with lactisole. In addition, these aphid species showed reduced weights when feeding on the artificial diet containing lactisole or on seedlings root drenched by lactisole. Furthermore, data from the electrical penetration graph revealed that S. avenae exhibited a greater number of phloem probes but significantly shorter mean and total phloem ingestion durations when feeding on wheat plants root-drenched by lactisole. It is worth noting, however, that root drenched by lactisole had a significant inhibitory effect on plant growth. These findings suggest that the sweet taste inhibitor lactisole may reduce aphid feeding preference and growth, offering a new avenue for aphid control strategies.