Lin Tang, Miao Sun, Junnan Chen, Qiong Dai, Song Xue, Chaoyong Liu, Ming Zhang
{"title":"Peptide-functionalized nanocapsules for targeted inhibition of β2-microglobulin amyloid aggregation.","authors":"Lin Tang, Miao Sun, Junnan Chen, Qiong Dai, Song Xue, Chaoyong Liu, Ming Zhang","doi":"10.1039/d4tb01347f","DOIUrl":null,"url":null,"abstract":"<p><p>Dialysis-related amyloidosis (DRA) is a severe complication in patients undergoing long-term dialysis, primarily driven by the deposition of β2-microglobulin (β2m) amyloid fibrils. The effective sequestration and removal of β2m from the bloodstream represent key therapeutic strategies for managing DRA. In this study, we developed a β2m-binding peptide (KDWSFYILAHTEF, denoted as CF)-functionalized nanocomposite (NC-CF), consisting of a protein nanocapsule surface modified with CF peptides to enable specific β2m binding. NC-CF effectively modulates β2m aggregation, transforming slender fibrils into larger clumps while providing steric hindrance to prevent further aggregation. With a high adsorption capacity, 1 μg of NC-CF can adsorb approximately 1 μg of β2m during dialysis, highlighting its potential as an efficient adsorbent for <i>in vitro</i> β2m removal. Furthermore, NC-CF exhibits excellent biocompatibility and significantly mitigates β2m aggregate-induced cytotoxicity, achieving a cell protection rate exceeding 70%. These findings suggest that NC-CF holds great promise as a cytoprotective agent and a nanoinhibitor of β2m aggregation <i>in vivo</i>. Overall, NC-CF offers a novel and effective approach for alleviating DRA by simultaneously removing β2m and safeguarding cells against amyloid-induced toxicity.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01347f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dialysis-related amyloidosis (DRA) is a severe complication in patients undergoing long-term dialysis, primarily driven by the deposition of β2-microglobulin (β2m) amyloid fibrils. The effective sequestration and removal of β2m from the bloodstream represent key therapeutic strategies for managing DRA. In this study, we developed a β2m-binding peptide (KDWSFYILAHTEF, denoted as CF)-functionalized nanocomposite (NC-CF), consisting of a protein nanocapsule surface modified with CF peptides to enable specific β2m binding. NC-CF effectively modulates β2m aggregation, transforming slender fibrils into larger clumps while providing steric hindrance to prevent further aggregation. With a high adsorption capacity, 1 μg of NC-CF can adsorb approximately 1 μg of β2m during dialysis, highlighting its potential as an efficient adsorbent for in vitro β2m removal. Furthermore, NC-CF exhibits excellent biocompatibility and significantly mitigates β2m aggregate-induced cytotoxicity, achieving a cell protection rate exceeding 70%. These findings suggest that NC-CF holds great promise as a cytoprotective agent and a nanoinhibitor of β2m aggregation in vivo. Overall, NC-CF offers a novel and effective approach for alleviating DRA by simultaneously removing β2m and safeguarding cells against amyloid-induced toxicity.