Effects of hydrazone-based G-quadruplex ligands on FANCJ/BRIP1-depleted cancer cells and a Caenorhabditis elegans dog-1-/- strain.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY NAR cancer Pub Date : 2025-02-08 eCollection Date: 2025-03-01 DOI:10.1093/narcan/zcaf004
Marcello Germoglio, Federica D'Aria, Giuseppe Cortone, Antonello Prodomo, Mohammad Mahtab, Rita Morigi, Jussara Amato, Francesca M Pisani, Concetta Giancola
{"title":"Effects of hydrazone-based G-quadruplex ligands on <i>FANCJ/BRIP1</i>-depleted cancer cells and a <i>Caenorhabditis elegans dog-1<sup>-/-</sup></i> strain.","authors":"Marcello Germoglio, Federica D'Aria, Giuseppe Cortone, Antonello Prodomo, Mohammad Mahtab, Rita Morigi, Jussara Amato, Francesca M Pisani, Concetta Giancola","doi":"10.1093/narcan/zcaf004","DOIUrl":null,"url":null,"abstract":"<p><p>G-quadruplex (G4) DNAs are alternative nucleic acid structures, proposed to play important roles in regulating DNA replication, gene transcription, and translation. Several specialized DNA helicases are involved in cellular G4 metabolism, in some cases with redundant functions. Among them, human FANCJ/BRIP1, which has orthologs in all metazoans, is one of the most powerful G4 resolvases, believed to act mainly at DNA replication forks. Here, we tested the effects of a set of hydrazone-derivative G4 ligands in a <i>FANCJ</i>-knocked-out HeLa cell line and in a <i>Caenorhabditis elegans</i> strain, where DOG-1, a FANCJ ortholog, was disrupted, as a whole organism model system. Our results revealed that loss of FANCJ specifically sensitized cancer cells to FIM-15, a mono-guanylhydrazone derivative bearing the diimidazopyrimidine core, among the tested hydrazone-based compounds and induced enhanced DNA damage in different chromosomal sites including telomeric ends. Moreover, dietary administration of FIM-15 to <i>dog-1</i> <sup>-/-</sup> nematodes stabilized G4 structures in gonadal cell nuclei and resulted in compromised embryonic development in the first-generation post-treatment. Collectively, our findings unveil a specific vulnerability of <i>FANCJ</i>-knocked-out cancer cells (and DOG-1-lacking worms) to G4 stabilization by the FIM-15 compound. This study provides an important proof-of-principle for use of G4 ligands in synthetic lethality-based therapeutic approaches targeting FANCJ-defective cancer cells.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":"7 1","pages":"zcaf004"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcaf004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

G-quadruplex (G4) DNAs are alternative nucleic acid structures, proposed to play important roles in regulating DNA replication, gene transcription, and translation. Several specialized DNA helicases are involved in cellular G4 metabolism, in some cases with redundant functions. Among them, human FANCJ/BRIP1, which has orthologs in all metazoans, is one of the most powerful G4 resolvases, believed to act mainly at DNA replication forks. Here, we tested the effects of a set of hydrazone-derivative G4 ligands in a FANCJ-knocked-out HeLa cell line and in a Caenorhabditis elegans strain, where DOG-1, a FANCJ ortholog, was disrupted, as a whole organism model system. Our results revealed that loss of FANCJ specifically sensitized cancer cells to FIM-15, a mono-guanylhydrazone derivative bearing the diimidazopyrimidine core, among the tested hydrazone-based compounds and induced enhanced DNA damage in different chromosomal sites including telomeric ends. Moreover, dietary administration of FIM-15 to dog-1 -/- nematodes stabilized G4 structures in gonadal cell nuclei and resulted in compromised embryonic development in the first-generation post-treatment. Collectively, our findings unveil a specific vulnerability of FANCJ-knocked-out cancer cells (and DOG-1-lacking worms) to G4 stabilization by the FIM-15 compound. This study provides an important proof-of-principle for use of G4 ligands in synthetic lethality-based therapeutic approaches targeting FANCJ-defective cancer cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Effects of hydrazone-based G-quadruplex ligands on FANCJ/BRIP1-depleted cancer cells and a Caenorhabditis elegans dog-1-/- strain. Histone H3E50K remodels chromatin to confer oncogenic activity and support an EMT phenotype. Specific modulation of 28S_Um2402 rRNA 2'-O-ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts. The Atlas of Protein-Protein Interactions in Cancer (APPIC)-a webtool to visualize and analyze cancer subtypes. Spatial transcriptomics in breast cancer reveals tumour microenvironment-driven drug responses and clonal therapeutic heterogeneity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1