Chun Ma, Mengsi Yang, Wei Zhou, Songxin Guo, Hui Zhang, Jun Gong, Xian-En Zhang, Feng Li
{"title":"The RNA Landscape of In Vivo-Assembled MS2 Virus-Like Particles as mRNA Carriers Reveals RNA Contamination from Host Viruses","authors":"Chun Ma, Mengsi Yang, Wei Zhou, Songxin Guo, Hui Zhang, Jun Gong, Xian-En Zhang, Feng Li","doi":"10.1021/acs.nanolett.4c04541","DOIUrl":null,"url":null,"abstract":"Virus-like particles (VLPs) are attractive systems for packaging and delivering therapeutic RNA molecules in vaccine development, protein replacement therapy, and gene editing. Different VLPs carrying target functional RNA have been biosynthesized and demonstrated for biomedical purposes. However, little attention has been paid to what other types of RNA, besides the target RNA, are encapsulated into VLPs, leading to a lack of knowledge of the landscape of RNA cargoes. In this work, we engineered the widely used MS2 VLPs to encapsulate a model cargo mRNA in yeast, with the packaging efficiency and specificity being quantitatively tuned by the copy number of packaging signals. Transcriptome sequencing of the RNA in the VLPs revealed RNA contamination from the hosts and host viruses. This study highlights the necessity of precise VLP and cargo design and a clear background of production hosts to ensure specificity and safety.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"12 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04541","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Virus-like particles (VLPs) are attractive systems for packaging and delivering therapeutic RNA molecules in vaccine development, protein replacement therapy, and gene editing. Different VLPs carrying target functional RNA have been biosynthesized and demonstrated for biomedical purposes. However, little attention has been paid to what other types of RNA, besides the target RNA, are encapsulated into VLPs, leading to a lack of knowledge of the landscape of RNA cargoes. In this work, we engineered the widely used MS2 VLPs to encapsulate a model cargo mRNA in yeast, with the packaging efficiency and specificity being quantitatively tuned by the copy number of packaging signals. Transcriptome sequencing of the RNA in the VLPs revealed RNA contamination from the hosts and host viruses. This study highlights the necessity of precise VLP and cargo design and a clear background of production hosts to ensure specificity and safety.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.